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Diffusion on Networks

Fundamental Process on Networks:

Capture of the dynamics
How information transits on the network ?
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Diffusion on networks

Diffusion = Iterative message passing process

⇒ Defines a diffusion Cascade
Tree structure
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Diffusion on Networks

Diffusion Items
Word of mouth / viral marketing
Virus or diseases
News, opinions, rumors, ..
Topics / videos / hashtags / links
Language models / expressions
Behaviors
Errors / Problems
...

Diffusion Episode = Set of linked events that occur on the
network through time
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Diffusion

The study of diffusion dynamics has a long history:
Agricultural practices (1943)

Study about the adoption of a new kind of hybrid corn by
259 Iowa’s farmers
Conclusion: the relationships network plays an important
role for the adoption of new products

Medical practices (1966)
Study about the adoption of new drugs by Illinois’ doctors
Conclusion: Word of mouth is more effective than scientific
studies in convincing the doctors

Psychological effects of opinions on the entourage of
persons (1958)
Contagion of obesity (2007)

Having an overweight friend increases our probability of
becoming obese by 57% !
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Homophily vs. Influence

Homophily
Two connected users tend to have similar behaviors

Influence
The behavior of a user has an impact on the future behavior
of his neighborhood

⇒ Temporality is crucial to distinguish influence (diffusion)
from homophily (recommendation)

If one observe relations of precedence between events:
influence
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Diffusion vs. Recommendation

Consider a network of product reviewing by users:

Object of the diffusion: a Product
Nodes = Users
Infection of a node = a user likes the product
Influence relationships between users
⇒ When a product is liked by this user, it then tends to be liked

by these other ones in the future

Object of the diffusion: a User
Nodes = Products
Infection of a node = an item has been liked by the user
Temporal recommendation
⇒ When somebody liked this product, she then tends to like

these related others in the future
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Diffusion Tasks

Buzz prediction - Will the content impact an important number
of users ? [Chen et al.,2013]

Source Users

1
0
0
...
0
1
0


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−−−−−−→ {0,1}
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Diffusion Tasks

Volume prediction - How many users will be eventually
infected? [Tsur and Rappoport, 2012]

Source Users

1
0
0
...
0
1
0


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−−−−−−→ N
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Diffusion Tasks

Infection prediction - Which users will be eventually infected?
[Bourigault et al., 2016]

Source Users

1
0
0
...
0
1
0


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−−−−−−→

Final Users

1
1
0
...
1
1
1
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Diffusion Tasks

Spread prediction - How will evolve the spread of the content?

Source Users

1
0
0
...
0
1
0


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−→

Infected Users per Step



1 2 ... T − 1 T

1 1 ... 1 1
0 0 ... 0 1
0 0 ... 0 0
... ... ... ... ...
0 1 ... 1 1
1 1 ... 1 1
1 1 ... 1 1
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Diffusion Tasks
Cascade prediction - Which links will follow the content?

Source Users

1
0
0
...
0
1
0


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−−−−−−→ {0,1}|R|

with R the set of relationships
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Diffusion Tasks
Source prediction - Who are the sources of a given content ?
[Shah and Zaman, 2010].

Infected Users

1
1
0
...
1
1
1


+

Content

ω1
ω2
...

ωd−1
ωd



fθ−−−−−−−−−−−−−−−−−−−−→

Source Users

1
0
0
...
0
1
0



15 / 78



Diffusion Tasks

Other tasks

Link Detection - Which are the main diffusion links of the
network? [Gomez-Rodriguez et al., 2011]
Opinion Leaders Detection - Who are the most influential
users of the network ? [Kempe et al., 2003]
Diffusion Maximization - To whom should one give a
content to maximize its spread ? [Kempe et al., 2003]
Firefighter Problem - How to stop the diffusion of a content
? [Anshelevich et al., 2009]
...
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Diffusion on networks

Challenges

The diffusion cascade is usually hidden
We do not know who influenced whom

What we get is the dated (first) participation of users to the
diffusion (diffusion episode)

⇒ We only know who participated in what and when

⇒ Model the diffusion dynamics of a network = Learning
problem of influence relationships from incomplete data
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Diffusion on networks

Challenges
Complex dynamics for rare events

Difficult learning
Stochastic models rather than deterministic ones

Influence distributions depend on the content
Different behaviors w.r.t. different contents
e.g., Paul can have a strong influence on Pierre for sport but
few for politics

Closed World Hypothesis rarely valid
Diffusion can take place on various media simultaneously

Inter-dependency / concurrency of diffusion processes
Some process can be impacted by others

Dynamicity of the network
New users / New relationships
Evolution of the influence relationships through time
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Diffusion Models

Models Macro : global statistics on the diffusion (size,
speed)

Bass : adoption of a product

SIR : virus diffusion

Models Micro : focus on users of the network [Kempe et
al., 2003]

Linear Threshold (LT) : Receiver-centric

Independent Cascade (IC) : Transmitter-centric
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The Bass model

Bass, 1969
Evolution of the rate of users i(t) that have adopted a product a
time t :

∂i
∂t

(t) = p × (1− i(t))︸ ︷︷ ︸
Spontaneous Adoptions

+ q × (i(t)× (1− i(t)))︸ ︷︷ ︸
Word of Mouth

p : Probability that a user adopts a product from ads
q : probability that a user adopts a product from a neighbor

Bass reports values p = 0.03 and q = 0.38 on average
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The model SIR

Epidemiological model. Each user can be in 3 different states.

Susceptible : not infected by the
disease;
Infected : infected by the disease;
Recovered : cured and immunized.

Evolution of the system
∂S
∂t = −p.SI
∂I
∂t = p.SI − r .I
∂R
∂t = r .I

p : transmission probability
r : probability of cure

→ Can also be applied on information diffusion on networks
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The Linear Threshold Model [Granovetter, 1973]

Micro-model of diffusion
Hypothesis: Additive Influence
Links associated to influence weights θi,j

Nodes associated to (stochastic) thresholds γj

Iterative model:

⇒ User j is infected at step t if:
∑

i∈Preds(j,t)
θi,j ≥ γj
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The Independent Cascade Model (IC)

Micro-model of diffusion
Hypothesis: influences are independent events
Infection probabilities θu,v are defined on every edge of the
graph
After its infection, a user u gets a unique chance to infect
each of its successors in the network for the next step
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IC Extensions

Continuous time
Saito 2009 (CTIC),Gomez-Rodriguez 2011 (NetRate)...

Inclusion of content
Barbieri 2013 (TIC)

Inclusion of users profiles
Guille 2012, Saito 2011...

Concurrent Diffusions
Myers 2012, Bharathi 2007...

etc...
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IC: Learning the Influence Relationships

Which inputs ?
Training set of episodes

Diffusion episode = List of timestamps of infection
Graph of the network

Explicit relationships can help to drive the learning but...
Sometimes no available relationship
Explicit relations do not always correspond to the main
influence relationships of the network [Ver Steeg et al., 2013]

⇒ Diffusion Link detection approaches: e.g., NetInf [Gomez
Rodriguez et al., 2010]

Search of the maximum spanning tree for each episode
Selection of the n links the most used by the trees

⇒ Or use the complete graph of the nodes if possible
(n × (n − 1) relations)

Can be restricted to links with at least one example of
possible diffusion in the training set
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IC: Learning the Influence Relationships

Independent Cascade Model (IC)
Inference from an influence graph with probabilities defined
on edges

Infection probability for v at step t = Probability that at least
one user infected at step t − 1 succeeds in influencing v :

Pt (v) = 1−
∏

u∈Preds(v)∧tu=t−1

1− θu,v
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IC: Learning the Influence Relationships

⇒ Find parameters θu,v maximizing the model likelihood
according to a training set of diffusion episodes D

[Saito et al., 2008] :

L(D; θ) =
∏

D∈D

∏
u∈D

PtD
u

(u)
∏

(u,v),u∈D∧v∈Succs(u)∧
((v 6∈D)∨(v∈D∧tD

v >tD
u +1))

1− θu,v

with PtD
u

(u) = 1−
∏

v∈Preds(u)∧tD
v =tD

u −1
1− θv ,u

Or equivalently:

log (L(D; θ)) =
∑
D∈D

∑
u∈D

log PtD
u

(u)+
∑

(u,v),u∈D∧v∈Succs(u)∧
((v 6∈D)∨(v∈D∧tD

v >tD
u +1))

log (1− θu,v )

⇒ Difficult to maximize
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Missing Information

Diffusion Episodes
One only know when each user was infected
Missing information: who infected whom

Time

Observed Diffusion Episode Possible Cascade Structures

If this information was available, the maximization problem
would be easy

⇒ An Expectation-Maximization algorithm (EM) was
proposed by Saito in 2008 for solving the problem
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Expectation-Maximization for IC [Saito et al., 2008]
1 Expectation (E) of the log-likelihood according to current

parameters θ̂

Q
(
θ; θ̂

)
= EZ|X,θ̂

[
L ((X,Z);θ))|θ̂

]
with Z containing all hidden (binary) transmission
outcomes.

P(zD
u,v = 1|D) =

θ̂u,v

P̂tD
v

(v)
and P(zD

u,v = 0|D) = 1− θ̂u,v

P̂tD
v

(v)

with P̂tD
u

(u) = 1−
∏

v∈Preds(u)∧tD
v =tD

u −1

1− θ̂v,u

Thus:
Q
(
θ; θ̂
)

=
∑
D∈D

ΦD
(
θ; θ̂
)

+
∑

(u,v),u∈D∧v∈Succs(u)∧
((v 6∈D)∨(v∈D∧tD

v >tD
u +1))

log (1− θu,v )

with
ΦD
(
θ; θ̂
)

=
∑

(u,v)∈D2,
v∈Succs(u)

∧tD
v =tD

u +1

θ̂u,v

P̂tD
v

(v)
log(θu,v ) + (1− θ̂u,v

P̂tD
v

(v)
) log(1− θu,v )
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Expectation-Maximization for IC [Saito et al., 2008]

2 Maximization (M) of the log-likelihood expectation :

θ̂ ← arg max
θ

(
Q
(
θ, θ̂

))

⇒ By canceling
∂Q
(
θ; θ̂
)

∂θ
, we get: θ∗u,v =

∑
D∈D?

u,v

θ̂u,v

P̂tD
v

(v)

|D?
u,v | + |D−u,v |

D?
u,v ={D ∈ D|(u, v) ∈ D2 ∧ tD

v = tD
u + 1}

D−u,v ={D ∈ D|u ∈ D ∧ ((v 6∈ D) ∨ (v ∈ D ∧ tD
v > tD

u + 1))}
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Limits of IC

Closed-world Hypothesis
External world can be represented as an additional node
[Gruhl et al., 2004]

Diffused content not taken into account
Influence distributions do not depend on what is diffused

Information on nodes not taken into account
User profiles
Current user activities

Time Discretization
Diffusion proceeds in steps
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IC : Time Discretization

IC learning requires to gather events per time period for
learning

Infection of v by u only possible at step tD
u + 1

⇒ Too long steps : too many events in the same steps (no
possible influence)

⇒ Too short steps : many ”holes” in the diffusion process
Isolated users with no possible explanation
Even if we remove empty steps, very strong assumptions on
the diffusion:

t=0sec

t=70sec

t=100sec

t=500sec

Observed Diffusion Episode Possible Cascade Structures for Different Sizes of Time-step

Step=1sec Step=1min Step=2min Step=10min
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Continuous Time Diffusion

Two main variants of IC propose to consider continuous
time delays of infection:

NetRate [Gomez-Rodriguez et al., 2011]
CTIC [Saito et al., 2009]
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Continuous Time Diffusion

NetRate [Gomez-Rodriguez et al., 2011]
Definition of probability distributions which decrease with
time (Exponential, Power, Raighley, etc.)

e.g., Exponential Distribution: f (tj |ti ; θi,j ) = θi,j exp−θi,j (tj−ti )

Only one parameter per link to control:
Influence strength
Influence delay

+ Convex optimization problem
− Every infection happens, some after a maximal time T

The choice of T can be difficult
− A slower influence does not necessarily imply a less

frequent one
CTIC [Saito et al., 2009]

2 types of parameters per link
Influence probability k ∈]0, 1[
Delay parameter r ∈ R+

Probability density that i infects j at time tD
j :

f (tj |ti ; ki,j ; ri,j ) = ki,j ri,j exp−ri,j (tD
j −tD

i )

+ A more flexible model
− But more complex to optimize⇒ EM algorithm
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Learning Diffusion Models in Practice
Continuous Time Diffusion

Very effective when infection delay regularities can be
observed but...
Such regularities are rarely observed from social data

⇒ The variability on delays can strongly limit the ability of
extracting influence tendencies

Relaxation of IC: Delay-Agnostic IC [Lamprier et al., 2015]
No time discretization
Uniform time delays

+ More flexible than IC (×10 more effective on social data)
+ More realistic than continuous models (performs at least as

well as CTIC on social data)
+ Greatly simpler than CTIC
− Infection times cannot be predicted

t=0sec

t=70sec

t=100sec

t=500sec

Observed Diffusion Episode Possible Cascade Structures for DAIC 42 / 78



DAIC

Log-likelihood of DAIC:

L(θ;D) =
∑
D∈D

∑
v∈D

log PtD
v

(v) +
∑
v 6∈D

∑
u∈D

log(1− θu,v )


with PtD

v
(v) = 1−

∏
u∈Preds(v)∧tD

u <tD
v

1− θu,v

Update-rule for DAIC :

θ∗u,v =

∑
D∈D+

u,v

θ̂u,v

P̂tD
v

(v)

|D+
u,v | + |D−u,v |

With:
D+

u,v ={D ∈ D|(u, v) ∈ D2 ∧ tD
v > tD

u }
D−u,v ={D ∈ D|u ∈ D ∧ v 6∈ D}
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Avoid overfitting with IC and DAIC
Learning bias of IC (increased with DAIC):

Rare pairs (u, v) can easily obtain θu,v = 1.0 ...

.. and can make more frequent pairs (u, v) converge to
θu,v = 0.0

⇒ Maximum likelihood reached with several parameters set to 1
(overfitting)

⇒ Rare users have a great impact on the extracted relationships
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DAIC Regularization

Influence is a rare event
Very high probabilities for θu,v are unlikely

⇒ Introduction of an exponential prior [Lamprier et al., 2015]:

p(θ) =
∏
θu,v

λe−λθu,v

Maximum a Posteriori:

θ∗ = arg max
θ
L(θ;D)− λ

∑
θu,v

θu,v

Favors sparse influence networks
⇒ Adaptation of the Saito’s EM
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Embedded IC

Representation Learning
Project items in a continuous space in such a way that relationships between items are
modeled by distances (or similarities) between their representations in this space

⇒ Obtain a more compact model
⇒ Infer new relationships

A

A

B

B

C

E ED

D

F
F

C

0.1

0.2

0.3

0.6

0.5

0.2

0.1

Observed Diffusion Episodes

IC
(Saito, 2008)

Embedded IC
(our Approach)

Each user i is associated to a projection zi ∈ Rd

The transmission probability θi,j becomes a function:

θi,j = f (zi , zj)
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Advantages

Less parameters, O(N) rather than O(N2)

Inclusion of correlations between links of the network:
Transitive relationships (cohesive communities)
Similar users tend to impact the same other users (bimodal
communities)

→ Naturally modeled by the use of a representation space
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Algorithm

Influence is an asymmetric relationship
Each user i is associated to two projections zi (transmitter
projection) and ωi (receptor projection) in Rd

The transmission probability θi,j becomes a function:

θi,j = f (zi , ωj) =
1

1 + exp
(

z(0)
i + ω

(0)
j + ||z(1..d)

i − ω(1..d)
j ||2

)
Inter-dependent probability values: no analytic solution for
the maximization step

→ GEM: the maximization is replaced by a step of stochastic
gradient ascent
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Embedded IC: Example

Ψ(A)

Ψ(B) Ψ(D)

Ψ(E)
Ψ(F)

φ(A)

φ(B)

φ(C)

φ(D)

φ(E)

φ(F)

Sampled Episode = {(A;1);(B;2);(C;2);(D;3);(F;4)}
Sampled User = D

Ψ(C)

Step 1

Iteration 1 :
Episode : {(A,1); (B,2); (C,2); (D,3); (E ,3); (F ,4)}
User : D (infected)
Infected predecessors: {A,B,C}
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Embedded IC: Example

Ψ(A)

Ψ(B)
Ψ(D)

Ψ(E)
Ψ(F)

φ(A)

φ(B)

φ(C)

φ(D)

φ(E)

φ(F)

Sampled Episode = {(B;1);(F;2);(D;5)}
Sampled User = A

Ψ(C)

Step 2

Iteration 2 :
Episode : {(B,1); (F ,2); (D,5)}
User : A (non infected)
Infected predecessors : {B,F ,D}
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Embedded IC: Example

Ψ(A)

Ψ(B)
Ψ(D)

Ψ(E)

Ψ(F)

φ(A)

φ(B)

φ(C)

φ(D)

φ(E)

φ(F)

Sampled Episode = {(C;1);(B;2)}
Sampled User = B

Ψ(C)

Step 3

Iteration 3 :
Episode : {(C,1); (B,2); }
User : B (infected)
Infected predecessors : {C}
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Influence links detection

On the Memetracker corpus:
Evaluation on the ability for assigning high transmission
probabilities to known relationships
Ranking of the links (ui ,uj ) according to f (zi , ωj )
Precision-Recall curves:

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recall

P
re
ci
si
on

Embedded IC
IC
Netrate
CTIC
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Limits of iterative approaches

Iterative models effective to describe diffusion processes
but...
... Low robustness w.r.t. network evolutions [Najar et al.,
2012]
... Hard to learn for large networks
... Over-fitting risks
... Complex estimations of infection probabilities
(Monte-Carlo simulations [Bòta et al., 2013] or Diffusion
kernels [Rosenfeld et al., 2016])

⇒ Non-iterative approaches for diffusion prediction
Focus on mapping final states from inital ones.
CD = fθ(SD), with SD and CD respectively the source and
final contamination states for the episode D
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A first non-iterative approach

Discriminative Model from a set of sources [Najar et al.,
2012]

Input = Binary vector SD ∈ {0; 1}|U|, with SD
i = 1 if i is in

the sources of D
Output = Binary vector CD ∈ {0; 1}|U|, with CD

i = 1 if i is in
the final infection of D

Logistic Regression

θ∗ = arg max
θ

∑
D∈D

∑
i∈U

CD
i log(

1
1 + e−fθ(i,SD)

)+

(1− CD
i ) log(1− 1

1 + e−fθ(i,SD)
)

Various possible functions f (dot product, neural network,
etc...)
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a Non-iterative Approach with Representation
Learning

Projection in a continuous latent space [Bourigault et al.,
2014]

Diffusion modeled as a heat diffusion process in the space

The temperature T (ui , t) of ui at time t renders its propensity of
infection

The heat starts from the source
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a Non-iterative Approach with Representation
Learning

Projection in a continuous latent space [Bourigault et al.,
2014]

Diffusion modeled as a heat diffusion process in the space

Heat equation :{
∂T
∂t = ∆xT
f (x ,0) = f0(x)

Solution when the source is
at x0 :

Tx0(x , t) = (4πt)−
n
2 e−

||x0−x||2

4t
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a Non-iterative Approach with Representation
Learning

Projection in a continuous latent space [Bourigault et al.,
2014]

Diffusion modeled as a heat diffusion process in the space

→ Find a representation Z of the users such that observed diffusion
can be explained as a heat kernel starting from the source

U = (u1, ...,uN)→ Z = (z1, ..., zN) ⊂ RD
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Diffusion as a heat process

Projection in a contiunous latent space [Bourigault et al.,
2014]

For an episode D whose source is sD:
∀(u, v), tD

u < tD
v ⇒ ∀t TsD (u, t) > TsD (v , t)

In the latent space→ geometric constraint:
∀(u, v), tD

u < tD
v ⇒ ||zsD − zu|| < ||zsD − zv ||

⇒ Loss Function:

∆rank (Z,D) =
∑
D∈D

∑
u,v

tc (u)<tc (v)

max(0,1− (||zsD − zv ||2 − ||zsD − zu||2))

+
∑

u,v∈D×D̄

max(0,1− (||zsD − zv ||2 − ||zsD − zu||2))

Optimization by stochastic gradient descent on Z.
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Diffusion as a heat process

Projection of users of Digg in 2 dimensions :

+ Capture of regularities between extracted relationships⇒
better generalization

+ Possibility to include the propagated content
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Heat Diffusion: Inclusion of the Content

Hypothesis : The diffused content impacts the diffusion
dynamics

Translation of the source according to the content

Similar learning:
Simultaneous learning of the translation function fθ and the
projections Z
Optimization by stochastic gradient ascent
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Heat Diffusion: Inclusion of the Content

Hypothesis : The diffused content impacts the diffusion
dynamics

Translation of the source according to the content

Similar learning:
Simultaneous learning of the translation function fθ and the
projections Z
Optimization by stochastic gradient ascent
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Heat Diffusion: Inclusion of the Content

Hypothesis : The diffused content impacts the diffusion
dynamics

Translation of the source according to the content

Similar learning:
Simultaneous learning of the translation function fθ and the
projections Z
Optimization by stochastic gradient ascent
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Heat diffusion: iterative version

Chain reaction : Each infected user starts emitting heat from its
infection time

A

B

C

D

E

F

t=0

⇒ Dynamic model
⇒ Infection time prediction
⇒ Dealing with multiple sources
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Heat diffusion: iterative version

Chain reaction : Each infected user starts emitting heat from its
infection time

A

B

C
E

D
F

t=5

⇒ Dynamic model
⇒ Infection time prediction
⇒ Dealing with multiple sources
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Heat diffusion: iterative version

Chain reaction : Each infected user starts emitting heat from its
infection time

A

B

E

D
F

C

t=10

⇒ Dynamic model
⇒ Infection time prediction
⇒ Dealing with multiple sources
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Heat diffusion: iterative version

Chain reaction : Each infected user starts emitting heat from its
infection time

A

B

E

D
F

C

t=15

⇒ Dynamic model
⇒ Infection time prediction
⇒ Dealing with multiple sources

73 / 78



Recurrent Neural Networks for Diffusion

Diffusion episodes could be seen as sequences
Recurrent Neural Networks are well suited for dealing with
sequences

⇒ RNN could be used to consider the history of events to
predict the future events

74 / 78



Recurrent Neural Networks for Diffusion

However, direct application of RNN does not well perform
for diffusion

⇒ Not sequences but trees

Should the prediction of J be impacted by the previous
observation of D ?
⇒ Cross-dependence of infections

A

B

C

D

E

F

K G

H

I

J

L

M
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Recurrent Neural Networks for Diffusion

RNN based on Attention Learning
DeepCas [Li et al., 2017]

CYAN-RNN [Wang et al., 2017]

⇒ RNN IC with MCMC / Variational inference
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