

Random forests for facial expression analysis

Kévin Bailly (ISIR UPMC) Joint work with A. Dapogny & S. Dubuisson

SMART School -- 5/9/2017

What are we trying to measure?

Objective

Subjective

Facial landmark localisation

AU1	AU2	AU4	AU5
30	6 3	-	60
Inner brow raiser	Outer brow raiser	Brow lowerer	Upper lid raiser
AU6	AU7	AU9	AU10
	36	20	ð
Cheek raiser	Lid tightener	Nose wrinkler	Upper lip raiser
AU12	AU15	AU17	AU20
AU12	AU15	AU17	AU20
AU12 Lip corner puller	AU15 Lip corner depressor	AU17 Chin raiser	AU20 Lip stretcher
AU12 Lip corner puller AU23	AU15 Lip corner depressor AU24	AU17 Chin raiser AU25	AU20 Lip stretcher
AU12 Lip corner puller AU23	AU15 Lip corner depressor AU24	AU17 Chin raiser AU25	AU20 Lip stretcher AU26

Ekman prototypical emotions

Facial Action Coding System (FACS)

Applications

Human-Machine Interaction

Safety

Medical

Marketing

Motion capture

Challenges

Data complexity

Limited amount of data

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
- Local subspace random forests
- Conclusion and perspectives

Classical Pipeline

Face detection

Face detection

- Viola & Jones Algorithm [Viola 2001]
 - Multi-scale sliding windows
 - Haar like features + AdaBoost
 - Accurate and Real time
- Widely used (OpenCV, Matlab vision tbx...)

Classical Pipeline

Face detection

Feature point alignment

• Main parts of feature point alignment techniques

Input image

Aligned model

- Active Appearance Models (AAM)
 - Parametric models of shape and appearance
 - Estimation of parameters that best describe the current instance of the face in the image
 - Lot of improvements since 2001

[Matthews et al. 04]

- Constrained Local Models (CLM)
 - Based on local texture analysis around landmarks

- Cascaded regression-based techniques
 - State of the art results
 - Iteratively update the landmark location (cascade) of regressors)
 - Require a lot of training samples

Recent results

[arxiv 17] [PRL (under review)]

Classical Pipeline

Face detection

Feature point alignment

Feature extraction

Feature extraction

- Geometric features

 normalized distance
 between feature points
 - angle between triplets of points

Feature extraction

- Geometric features
- Appearance features

Raw pixels

SIFT / HOG

Feature extraction

- Geometric features
- Appearance features
- Temporal features

Motion History Image (MHI) (e.g. [Koelstra et al. 10])

(dense) optical flow (e.g. [Allaert et al. 17])

Classical Pipeline

Contributions

	Method	Task			
Challenges		Landmarks	Action Units	Emotions	
Heterogenous Features	MK-SVM	[FG 11] [IVC 13]	[FERA 11] 1st (with Supelec)	[PAA 14]	
Limited amount of data	HMT-MLKR	[These Nicolle]	[FERA 15] <mark>1st</mark> [IVC 16]		
Temporal information	PCRF			[ICCV 15] [CVPR 16 demo]	
Head pose	MV-PCRF			[TAC 17]	
Occlusions	LS-RF		[IJCV 17]		
Online Learning	NDF	[Arxiv. 17] [PRL submitted]		19	

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
- Local subspace random forests
- Conclusion and perspectives

Features from heterogeneous templates

- normalized **distance** between feature points
- angle between triplets of points
- integral HoG from barycentric coordinates

Constraints on the ML framework:

- Very high dimensional, potentially noisy data
- Generalize well to unseen morphologies and contexts
- Recognition in **real-time**

Tree 1

Tree T

- Problems
 - Dynamic of the expression is not used
 - Robustness w.r.t. head pose variation is not ensured
 - Presence of occlusions can dramatically affect the performance

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
 - PCRF for Transition pattern modelling
 - Multi-view extension of PCRF
 - Experiments
- Local subspace random forests
- Conclusion and perspectives

- Trade-of between strength and decorrelation of trees
- Key ideas:
 - 1) increase strength with pairwise derivatives feature templates
 - static features
 - pairwise derivatives of static features

2) increase decorrelation by considering multiple transitions

A Dapogny, K Bailly, S Dubuisson. Pairwise Conditional Random Forests for facial expression recognition. ICCV 2015

Example pairwise query of a PCRF

27

A Dapogny, K Bailly, S Dubuisson. Pairwise Conditional Random Forests for facial expression recognition. ICCV 2015

A Dapogny, K Bailly, S Dubuisson. Pairwise Conditional Random Forests for facial expression recognition. ICCV 2015

28

A Dapogny, K Bailly, S Dubuisson. Pairwise Conditional Random Forests for facial expression recognition. ICCV 2015

29

A Dapogny, K Bailly, S Dubuisson. Pairwise Conditional Random Forests for facial expression recognition. ICCV 2015

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
 - PCRF for Transition pattern modelling
 - Multi-view extension of PCRF
 - Experiments
- Local subspace random forests
- Conclusion and perspectives

Multi-view extension of PCRF

- Conditioning on head pose estimate $\omega(\mathcal{I}^n)\in \Omega$
- Pose space quantized in 15 pose bins $\{\Omega_i = \Omega_{\gamma_i,\beta_i}\}_{i=1,...,k}$

A Dapogny, K Bailly, S Dubuisson Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests. IEEE Trans. on Aff. Comp. 2017

Multi-view extension of PCRF

Static Multi-view model (MVRF)

$$p^n(c) = rac{1}{T}\sum_{\Omega_i\in\Omega}\sum_{t=1}^{\mathcal{N}(\Omega_i)}p_t(c|\mathcal{I}^n,\Omega_i)$$

Multi-view PCRF

$$p^n(c) = rac{1}{T}\sum_{m=n-1}^{n-N}\sum_{\Omega_i\in\Omega}\sum_{c'\in\mathcal{C}}\sum_{t=1}^{\mathcal{N}(c',\Omega_i)}p_t(c|\mathcal{I}^n,\mathcal{I}^m,\Omega_i,c')$$

A Dapogny, K Bailly, S Dubuisson Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests. IEEE Trans. on Aff. Comp. 2017

Multi-view extension of PCRF

- Non-frontal head poses generated from high-resolution 3D face scans
- Useful pose range of ±45 deg yaw, ±30 deg pitch
- Tree sampling distribution constructed from the data
- 122623 images for training, 906030 images for test

A Dapogny, K Bailly, S Dubuisson Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests. IEEE Trans. on Aff. Comp. 2017

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
 - PCRF for Transition pattern modelling
 - Multi-view extension of PCRF
 - Experiments
- Local subspace random forests
- Conclusion and perspectives

Experiments

Varying the temporal integration parameters (in frames, at 30 fps) on BU-4DFE database

- Static < Full < Conditional
- Accuracy is better when we look at more frames with less correlation between them

A Dapogny, K Bailly, S Dubuisson Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests. IEEE Trans. on Aff. Comp. 2017

Experiments

• Robustness w.r.t. head pose variations

• Runtime evaluation for 500 trees: 2.4 ms

A Dapogny, K Bailly, S Dubuisson Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests. IEEE Trans. on Aff. Comp. 2017

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
- Local subspace random forests
 - Local expression predictions
 - Weighted local subspace random forests
 - Confidence-Aware AU prediction using LEP features
- Conclusion and perspectives

Local expression predictions

- Problem: global RF (RS-RF) is sensible to occlusions of targeted areas
- No available data for realistic self-occlusions
- Idea: Grow trees on **spatially-constrained local face subspaces**
 - increased decorrelation
 - better repartition of the features and robustness to occlusions

A Dapogny, K Bailly, S Dubuisson. Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection. International Journal of Computer Vision, 2017

Local expression predictions

- Mesh tessellation via adaptative splitting
- Random masks M_t : Surface R, triangles τ
- Local Expression Predictions (LEP) :

$$p(c|\mathcal{I}, au) = rac{1}{Z_{ au}} \sum_{t=1}^T rac{\delta(au \in M_t) p_t(c|\mathcal{I})}{|M_t|}$$

• Local Subspace RF (LS-RF):

$$p(c|\mathcal{I}) = rac{1}{T} \sum_{\tau} Z_{\tau} p(c|\mathcal{I}, \tau)$$

A Dapogny, K Bailly, S Dubuisson. *Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection*. International Journal of Computer Vision, 2017

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
- Local subspace random forests
 - Local expression predictions
 - Weighted local subspace random forests
 - Confidence-Aware AU prediction using LEP features
- Conclusion and perspectives

Weighted Local subspace random forests

• Weighted Local Subspace RF (WLS-RF):

$$p(c|\mathcal{I}) = rac{\sum\limits_{\tau} lpha^{(au)} Z_{ au} p(c|\mathcal{I}, au)}{\sum\limits_{ au} lpha^{(au)} Z_{ au}}$$

• $\alpha^{(\tau)}$ triangle-wise confidence measurement

$$\alpha^{(\tau)}(\mathcal{I}) = \min(\alpha^{(k_1)}(\mathcal{I}), \alpha^{(k_2)}(\mathcal{I}), \alpha^{(k_3)}(\mathcal{I}))$$

α^(k) feature point-wise confidence provided by a hierarchical autoencoder network

A Dapogny, K Bailly, S Dubuisson. Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection. International Journal of Computer Vision, 2017

Weighted Local subspace random forests

- Hierarchical autoencoder network
- Manifold learning of local texture with denoising autoencoders

$$\alpha^{(k)}(\mathcal{I}) = 1 - \frac{||\Psi^{(k)} - g^1 \circ g^2 \circ h^2 \circ h^1(\Psi^{(k)})||^2}{(||\Psi^{(k)}|| + ||g^1 \circ g^2 \circ h^2 \circ h^1(\Psi^{(k)})||)^2}$$

A Dapogny, K Bailly, S Dubuisson. Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection. International Journal of Computer Vision, 2017

Experiments on occluded data

Occlusion	WLS-RF	RGBT ¹³
None	94.3	94.4
R8	92.2	92
R16	86.4	82
R24	74.8	62.5
$\setminus Eyes$	87.9	88
$\setminus Mouth$	72.7	30.3

 13 "Random Gabor based templates for facial expression recognition in images with facial occlusion". In: *Neurocomputing* (2014).

Qualitative results

Presentation Outline

- Classical Pipeline
- Random forests for FER
- Pairwise conditional random forests
- Local subspace random forests
 - Local expression predictions
 - Weighted local subspace random forests
 - Confidence-Aware AU prediction using LEP features
- Conclusion and perspectives

Confidence-Aware AU prediction using LEP features

• Using LEPs as features to describe AU occurrence

Local expression predictions

- Use LEP feature relevance for AU-wise confidence measurement
- Single-output vs Multi-output
- Random task assignment at each split node

A Dapogny, K Bailly, S Dubuisson. Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression 47 Recognition and Action Unit Detection. International Journal of Computer Vision, 2017

Confidence-Aware AU prediction using LEP features

AU	MO-500	MO	SO	MLCNN ¹⁴
1	0.728	0.674	0.684	0.702
2	0.619	0.526	0.552	0.715
4	0.778	0.752	0.667	0.704
6	0.905	0.897	0.860	0.855
9	0.849	0.825	0.770	0.829
12	0.962	0.962	0.929	0.913
25	0.958	0.957	0.950	0.838
26	0.793	0.770	0.814	0.757
Avg	0.824	0.795	0.778	0.789

- LEPs learned on multiple datasets yield high predictive power
- Multi-output formulations bring extra tree decorrelation
- Using a refined mesh allows better prediction of subtle AUs

¹⁴ "A Multi-label Convolutional Neural Network Approach to Cross-Domain Action Unit Detection". In: ACII. 2015.

Confidence-Aware AU prediction using LEP features

• "reverse FACS": LEP heat maps

A Dapogny, K Bailly, S Dubuisson. Confidence-Weighted Local Expression Predictions for Occlusion Handling in Expression Recognition and Action Unit Detection. International Journal of Computer Vision, 2017

JEMImE Project

- **ANR JEMIME** (Jeu Educatif Multimodal d'Imitation Emotionnelle)
- Teach ASD children how to produce adequate emotions
- Assess the quality of emotions produced by children
- Requires analysis of subtle **spontaneous facial behaviors**
- Robust and Real-time

JEMImE Project

Conclusion

- Solutions for automatic facial expression analysis
 - Random-forest based approach
 - Prototypical emotions and AU prediction
 - Temporal integration, pose and occlusion handling
- Future work
 - New conditional networks architectures (e.g. deep neural decision forests) for robust and real time face processing systems
 - Preliminary results for facial landmark tracking