Machines' Learning on Social Behaviour Sensing

Björn W. Schuller
Machine Learning Group
Imperial College London
Chair of Complex & Intelligent Systems
University of Passau
audEERING UG
<table>
<thead>
<tr>
<th>Year</th>
<th>Class</th>
<th># Classes</th>
<th>%UA/*AUC/*CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>Nativeness</td>
<td>[0,1]</td>
<td>43.3*</td>
</tr>
<tr>
<td></td>
<td>Parkinson’s</td>
<td>[0,100]</td>
<td>54.0*</td>
</tr>
<tr>
<td></td>
<td>Eating</td>
<td>7</td>
<td>62.7</td>
</tr>
<tr>
<td>2014</td>
<td>Cognitive Load</td>
<td>3</td>
<td>61.6</td>
</tr>
<tr>
<td></td>
<td>Physical Load</td>
<td>2</td>
<td>71.9</td>
</tr>
<tr>
<td>2013</td>
<td>Social Signals</td>
<td>2x2</td>
<td>92.7*</td>
</tr>
<tr>
<td></td>
<td>Conflict</td>
<td>2</td>
<td>85.9</td>
</tr>
<tr>
<td></td>
<td>Emotion</td>
<td>12</td>
<td>46.1</td>
</tr>
<tr>
<td></td>
<td>Autism</td>
<td>4</td>
<td>69.4</td>
</tr>
<tr>
<td>2012</td>
<td>Personality</td>
<td>5x2</td>
<td>70.4</td>
</tr>
<tr>
<td></td>
<td>Likability</td>
<td>2</td>
<td>68.7</td>
</tr>
<tr>
<td></td>
<td>Intelligibility</td>
<td>2</td>
<td>76.8</td>
</tr>
<tr>
<td>2011</td>
<td>Intoxication</td>
<td>2</td>
<td>72.2</td>
</tr>
<tr>
<td></td>
<td>Sleepiness</td>
<td>2</td>
<td>72.5</td>
</tr>
<tr>
<td>2010</td>
<td>Age</td>
<td>4</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>3</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>[-1,1]</td>
<td>42.8*</td>
</tr>
<tr>
<td>2009</td>
<td>Emotion</td>
<td>5</td>
<td>44.0</td>
</tr>
<tr>
<td></td>
<td>Negativity</td>
<td>2</td>
<td>71.2</td>
</tr>
</tbody>
</table>

Affect.

- **AVEC 2011 & 2012: Emotion**
 AVEC database: 50k Turns

- **AVEC 2013 & 2014: Depression**
 AVDLC database: 240 h, ~300 subjs.
 Beck Depression Inventory: 0 – 63

- **AV+EC 2015: Emotion**
 RECOLA database: 6 h, ~30 subjs.

Personality.

- MAPTRAITS: Perceived Perso.
 SEMAINE:
 44 clips, 11 subjects, 6 raters

<table>
<thead>
<tr>
<th>Agreement</th>
<th>Audio</th>
<th>Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>Openness</td>
<td>.53</td>
<td>.39</td>
</tr>
<tr>
<td>Conscientious</td>
<td>.51</td>
<td>.28</td>
</tr>
<tr>
<td>Extroversion</td>
<td>.66</td>
<td>.38</td>
</tr>
<tr>
<td>Agreeableness</td>
<td>.50</td>
<td>.41</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>.77</td>
<td>.35</td>
</tr>
<tr>
<td>Engagement</td>
<td>.65</td>
<td>.45</td>
</tr>
<tr>
<td>Likeability</td>
<td>.56</td>
<td>.37</td>
</tr>
<tr>
<td>Facial Attractivity</td>
<td>-</td>
<td>.34</td>
</tr>
<tr>
<td>Vocal Attractivity</td>
<td>.41</td>
<td>-</td>
</tr>
</tbody>
</table>

Working, Yet?
"YouTube Movie Reviews: In, Cross, and Open-domain Sentiment Analysis in an Audiovisual Context"

Eye-Contact.

- **Eye Contact from Acoustics**
 GRAS² Corpus: 28 + 4 subjects

"The acoustics of eye contact - Detecting visual attention from conversational audio cues", ACM Gaze-In, 2013.

<table>
<thead>
<tr>
<th>UA [%] / AUC</th>
<th>67.4 / .732</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye-Contact</td>
<td></td>
</tr>
</tbody>
</table>
Social Traits.

- **Perceived Leadership Traits**
 409 recordings, 10 raters
 Acoustic & Linguistic analysis

<table>
<thead>
<tr>
<th>Trait</th>
<th>UA [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Malicious</td>
<td>61.3</td>
</tr>
<tr>
<td>Diplomatic</td>
<td>58.5</td>
</tr>
<tr>
<td>Achiever</td>
<td>72.5</td>
</tr>
<tr>
<td>Charismatic</td>
<td>63.2</td>
</tr>
<tr>
<td>Teamplayer</td>
<td>65.2</td>
</tr>
</tbody>
</table>

"The Voice of Leadership: Models and Performances of Automatic Analysis in On-Line Speeches",
Eating.

- **Speech Under Eating & Food**
 - 30 subjects, 6 food types, +ASR features

```
No  x
Ha  x  x
Ba  x  x
Ne  x  x
Ap  x  x
Cr  x  x
Bi  x  x
```

```
<table>
<thead>
<tr>
<th>R²</th>
<th>Crispness</th>
<th>.562</th>
</tr>
</thead>
</table>
```

Action Units.

- **Face Reading from Speech**
 GEMEP corpus, SVM vs DLSTMNNs, big (65) vs small (28) feature set

<table>
<thead>
<tr>
<th>AU</th>
<th>Onset</th>
<th>Apex</th>
<th>Offset</th>
<th>Occu.</th>
<th>Onset</th>
<th>Apex</th>
<th>Offset</th>
<th>Occu.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>61.88</td>
<td>64.54</td>
<td>59.48</td>
<td>67.03</td>
<td>62.08</td>
<td>67.96</td>
<td>61.18</td>
<td>67.62</td>
</tr>
<tr>
<td>2</td>
<td>64.38</td>
<td>67.43</td>
<td>62.27</td>
<td>69.33</td>
<td>64.60</td>
<td>70.99</td>
<td>62.98</td>
<td>70.90</td>
</tr>
<tr>
<td>4</td>
<td>61.35</td>
<td>66.21</td>
<td>63.33</td>
<td>64.66</td>
<td>61.90</td>
<td>66.67</td>
<td>63.19</td>
<td>67.05</td>
</tr>
<tr>
<td>6</td>
<td>64.01</td>
<td>65.17</td>
<td>63.35</td>
<td>63.78</td>
<td>64.25</td>
<td>67.71</td>
<td>63.17</td>
<td>63.11</td>
</tr>
<tr>
<td>7</td>
<td>62.71</td>
<td>56.62</td>
<td>58.29</td>
<td>54.47</td>
<td>62.85</td>
<td>59.74</td>
<td>61.46</td>
<td>52.72</td>
</tr>
<tr>
<td>10</td>
<td>61.82</td>
<td>60.53</td>
<td>56.39</td>
<td>60.39</td>
<td>61.92</td>
<td>61.03</td>
<td>58.02</td>
<td>60.34</td>
</tr>
<tr>
<td>12</td>
<td>59.34</td>
<td>59.85</td>
<td>56.71</td>
<td>58.67</td>
<td>58.04</td>
<td>60.92</td>
<td>57.77</td>
<td>58.72</td>
</tr>
<tr>
<td>17</td>
<td>60.47</td>
<td>64.78</td>
<td>62.34</td>
<td>64.53</td>
<td>61.62</td>
<td>64.94</td>
<td>63.13</td>
<td>65.88</td>
</tr>
<tr>
<td>Avg.</td>
<td>62.00</td>
<td>63.14</td>
<td>60.27</td>
<td>62.86</td>
<td>62.16</td>
<td>65.00</td>
<td>61.36</td>
<td>63.29</td>
</tr>
</tbody>
</table>
There is just one Vocal Production Mechanism…

- **Multiple-Targets**
 - Drunk
 - Angry
 - Has a Cold
 - Neurotic
 - Tired
 - Has Parkinson’s
 - Is Older

<table>
<thead>
<tr>
<th>% UA</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likability</td>
<td>59.1</td>
<td>(+A,G,Cl) 62.2</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>62.9</td>
<td>(+G,OCEA, Cl) 67.5</td>
</tr>
</tbody>
</table>
Signal Capture

Principle.

“Big Data vs. Little Labels”

Efficient Weakly Supervised

\[s[k] \]

Learning at Signal’s Edge

Preprocessing

Feature Extraction

Learning

\[y \]

/Decision

 UILabel

(e.g., “burst”)
Feature Extraction.

- **openSMILE**
 Brute-force High-Dim. Spaces
 (Android / C++)
 Online update

<table>
<thead>
<tr>
<th>#features</th>
<th>RTF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10k</td>
<td>2%</td>
</tr>
<tr>
<td>500k</td>
<td>3%</td>
</tr>
</tbody>
</table>

```
Sensor-Signal
- Energy
- Harmonicity
- Fund. Freq.
- ...
- ...
- TF-Transform

Deriving | Filtering | Chunking | Deriving | Filtering |
---------|-----------|----------|----------|-----------|
Extremes  | Moments   | Peaks    | Segments | Spectral  |
Moments   | Peaks     | Segments | Spectral | Regression|
Peaks     | Segments  | Spectral | Regression|          |
Segments  | Spectral  | Regression|          |          |
Spectral  | Regression|          |          |          |
Regression|          |          |          |          |
```

“Recent Developments in openSMILE, the Open-Source Multimedia Feature Extractor”, ACM Multimedia, 2013.
(2nd place ACM MM Open Source Software Competition in 2010 and 2013, ~600 citations for 3 papers)
Less is More?

- **Geneva Minimalistic Set**

 GeMAPS: 18 LLDs / 62 functionals
 Pitch, Jitter, Formant 1-3, Formant 1 bandwidth
 Shimmer, Loudness, HNR
 Alpha Ratio, Hammarberg Index, Spectral Slope 0–500Hz
 and 500–1500 Hz, Formant 1-3 relative energy,
 Harmonic difference H1–H2, Harmonic difference H1–A3

- **Extended**: +7 LLDs / 88 functionals
 MFCC 1–4, Spectral Flux, Formant 2–3 bandwidth

Bag-of-X-Words

• **Audio Words**
 Base: UA/WA = 54.3/61.2%

VQ vs SVQ

VAM: Valence

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td># SV</td>
<td>SVCS [bit]</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>

Deep Learning.

- **Deep Neural Networks**

 DNN = MLP…

 Training makes the difference:

 Build them layer-wise

 Less uninitialized parameters

 Use “raw” features as input

 Net learns own higher-level features

 Use more training data

 On-line learning (stoch. gradient descent)

 Use ReLUs, drop-out learning, …

\[
y = f_{DNN}(x) = o \left(w^K \sigma \left(w^{K-1} \sigma (\ldots w^1 x) \right) \right)
\]

\[
E_{Tr}(y, y^*) = \sum_{x \in Tr} D(f_{DNN}(x), y^*)
\]

\[
w^{(i+1)} = w^{(i)} - \eta \frac{\partial E_B}{\partial w} (w^{(i)}), B \subset Tr
\]
Deep LSTM Nets.

• LSTM Cell

 Linear Unit
 Auto weight 1
 “Error Carousel”

 Non-linear Gate
 Input / Output / Forget

 Multiplicative
 Open / Shutdown

Example: ComParE: SSC

<table>
<thead>
<tr>
<th>% AUC (Acc.)</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>83.3</td>
</tr>
<tr>
<td>Deep NN</td>
<td>92.4</td>
</tr>
<tr>
<td>LSTM</td>
<td>93.0</td>
</tr>
<tr>
<td>Deep LSTM</td>
<td>94.0</td>
</tr>
</tbody>
</table>

“Social Signal Classification Using Deep BLSTM Recurrent Neural Networks”, IEEE ICASSP, 2014. (Best Result ComParE: SSC)
Deep Recurrent Nets.

- “Very Deep” NN

\[y_t = f_{RNN}(x_0, \ldots, x_t) = \sigma \left(W^o \sigma \left(Wx_t + R \sigma (\ldots Wx_0 + Rh_0) \right) \right) \]
Parallel Learning.

- **CURRENT**

 10 – 1k LSTM cells, 2k – 4Mio parameters, Distribution

Weakly Supervised Learning.

- **Transfer Learning**
 Re-use data of related domain

- **Active Learning**
 Select “most informative” instances from large amount of unlabelled data

- **Semi-Supervised Learning**
 Have computer label the data

- **Cooperative Learning**
 Efficient combination of the above
Transfer Learning.

- **Transfer Learning**
 Sparse Auto-Encoder
 target values \(\hat{x} \) input

<table>
<thead>
<tr>
<th>% UA / CC</th>
<th>Target</th>
<th>w/o</th>
<th>DAE</th>
<th>DAE-NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ComParE : EC</td>
<td>60.4</td>
<td>56.3</td>
<td>59.2</td>
<td>64.2</td>
</tr>
<tr>
<td>M (\rightarrow) S: A</td>
<td>.82</td>
<td>.05</td>
<td>.32</td>
<td>-</td>
</tr>
<tr>
<td>M (\rightarrow) S: V</td>
<td>.51</td>
<td>.06</td>
<td>.16</td>
<td>-</td>
</tr>
</tbody>
</table>

Cooperative Learning.

Stop Criteria:
- No data ‘likely’ sparse class
- Accuracy saturation

Confidence & Sparseness
- Sparse: AL
- Else: Discard
- High: SSL
- Else: AL

Model
- Final model

Classify
- Unlabelled instances

Train
- Labelled instances
- Add
- Newly labelled

Cooperative Learning and its Application to Emotion Recognition from Speech,”
Cooperative Learning.

- **Example: ComParE:EC**
 1) Active Learning (AL)
 2) Semi-Supervised
 3) Cooperative Learning
 - cross-view (xv)
 - multi-view (mv)
 4) Dynamic
 - further 79.2% reduction

"Cooperative Learning and its Application to Emotion Recognition from Speech,"
iHEARu-PLAY

• **Playful Sourcing**

 iHEARu-PLAY:
 Gamified annotation
 Competing w/ others
 Gratification...

<table>
<thead>
<tr>
<th>Badge Name</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Bird</td>
<td>Answer 100 questions between 4 am and 7 am</td>
</tr>
<tr>
<td>Night Owl</td>
<td>Answer 100 questions between 23 pm and 2 am</td>
</tr>
<tr>
<td>Expert</td>
<td>Reach a score of 5000 Points</td>
</tr>
<tr>
<td>Master</td>
<td>Reach a score of 20000 Points</td>
</tr>
<tr>
<td>Powerman</td>
<td>Collect 100 Bonus Items (in total)</td>
</tr>
<tr>
<td>Regular Customer</td>
<td>Have a constant log-in streak of 7 days in a row</td>
</tr>
<tr>
<td>Way to go</td>
<td>Answer 100 questions in total</td>
</tr>
<tr>
<td>Autobiographer</td>
<td>Fill out own bibliography</td>
</tr>
<tr>
<td>Chatterbox (hidden)</td>
<td>Used the contact form 5 times</td>
</tr>
</tbody>
</table>

Cooperative Learning.

- **Confidence Measure**

 Learning Recogniser Behaviour

 Adaptation to target domain:
 Semi-supervised learning

Distribution.

Embedding.

- **Mobile Platform**
 Samsung Galaxy S3 (Android) vs Intel Core i3 2.1 GHz Laptop

<table>
<thead>
<tr>
<th>Set</th>
<th># feats.</th>
<th>RTF (S3)</th>
<th>RTF (i3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeMAPS Extended</td>
<td>88</td>
<td>2.63</td>
<td>0.11</td>
</tr>
<tr>
<td>Interspeech Emotion Ch.</td>
<td>384</td>
<td>0.43</td>
<td>0.04</td>
</tr>
<tr>
<td>Interspeech ComParE</td>
<td>6373</td>
<td>2.81</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Learning Hidden Representations.

• Semi-NMF

\[X^{\pm} \approx Z^{\pm} H^{+} \]

Matrix factorization, uncovers meaningful features

Clustering interpretation:
- Z: cluster centroids
- H: soft membership for every data point \(h_{ik} = \begin{cases} 1 & \text{if } x_i \text{ belongs to cluster} \\ 0 & \text{otherwise} \end{cases} \)

Soft version of k-means clustering – equivalent: iff H is orthogonal with:

\[
C'_{k-\text{means}} = \sum_{i=1}^{n} \sum_{j=1}^{k} h_{ki} \| x_i - z_k \|^2 = \| X - Z H \|^2_F
\]

Better, if data is not distributed in spherical manner
Deep Semi-NMF.

Deep Semi-NMF.

The CMU Multi Pose, Illumination, and Expression (free) 2,856 samples

The CMU Multi Pose, Illumination, and Expression (proprietary) 13,230 samples

The Extended Multi Modal Verification for Teleservices and Security applications 2,360 samples

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Clustering Accuracy</th>
<th>Number of Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Semi-NMF</td>
<td>0.65</td>
<td>40</td>
</tr>
<tr>
<td>Semi-NMF</td>
<td>0.60</td>
<td>50</td>
</tr>
<tr>
<td>NMF (MUL)</td>
<td>0.55</td>
<td>60</td>
</tr>
<tr>
<td>Multi-layer NMF</td>
<td>0.50</td>
<td>70</td>
</tr>
<tr>
<td>NeNMF</td>
<td>0.45</td>
<td>80</td>
</tr>
<tr>
<td>GNMF</td>
<td>0.40</td>
<td>90</td>
</tr>
</tbody>
</table>

UAAUC [%]	Pose	Emotion	ID
Semi-NMF | 94.32| 44.72 | 50.33|
Deep Semi-NMF | 99.78| 73.33 | 74.79|
A priori DSNMF | 99.99| 76.67 | 80.44|

Challenge Your Peers
The Challenge

• **Why at all?**

 Provide unified test-beds for evaluation
 Exchange of ideas across the community
 …on specific given tasks

 Help overcome often present lack of comparability
 …due to different data-sets, partitioning, evaluation measures, etc.

 May serve as long-standing reference

 Raises awareness for your field outside of it

 Raise acceptance for “low numbers” (the reality shock)
Risks

• **Focus on Optimisation**

 Novel paradigms often take development time
 Other aspects such as efficiency often neglected
 Awarding best paper can ease focus on optimisation

• **Over-Optimisation**

 Using new datasets for the challenge helps
Selecting a Corpus

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Example</th>
</tr>
</thead>
</table>
| **Quantity** | “There’s no data like more data”
High diversity with respect to diverse factors
Reasonably balanced distribution
Knowledge of natural distribution (‘priors’) |
| **Quality** | Adequate data
Realistic data
Ideal capture conditions
Intended corruption |
| **Modelling** | Reasonable categorisation
Well-defined mappings between models |
| **Labelling** | Unique and additional labelling (text+events, labeller tracks, context, ...)
Provision of gold standard’s reliability |
| **Release** | Documentation of side conditions
Additional perception tests
Freeing of the data
Defined partitioning |
The End User License Agreement

- EULA should
 - Be the same for all corpora
 - Fit one page (fax!)
 - Be signed by permanent staff member
 - Emailed or faxed...
The Data

- Mandatory Things

 Permissions to distribute the data

 An end-user license agreement

 There is a development and a test set

 The test set is not known to anybody previously (!)

 Train and test are sufficiently different…

 It contains the task and not rather noise
Finding a Venue

- To satellite or not to satellite

ACM ICMI, ACM MM, HUMAINE / IEEE ACII, IEEE FG, Interspeech
IEEE ICASSP (?), NIPS (?), ICDAR (?), ICPR (?), IJCAI (?), etc.

Satellite often less effort and more attractive

Potential to reach audience of main conference

More restrictive, e.g., with proceedings
Rules Rule!

- Rules...

 Making rules clear from beginning
 Readable at any time to all (!) participants
 No change during the ongoing Challenge
 Sticking strictly (!) to them
 Clarifying immediately

 Organisers do not participate
 Clarify if (independent) paper acceptance is mandatory
 Limit number of trials
 Preserve right to re-evaluate winners’ results
The Task Design

• Make the Task

 As close to the real thing as possible

 Appealing, novel in some aspect

 Useful to the world

 Not too hard…

 Manageable in terms of data transfer

 Comprehensible
Testing

• **Measures**
 Accuracy (Un-/Weighted Average Recall)
 Precision, F-Measure, confusions
 Area under ROC
 Mean Linear Error, Cross Correlation

• **Partitioning**
 J-fold Stratified Cross-Validation
 Leave-One-Speaker (group)-Out
 Train-Develop-Test

• **Discussion**
 Significance
 Ground truth
 Prototypicality
Tools

• **Tasks:**

 - Feature extraction
 - Model training and classification
 - Pre-trained models

• **Application Domains:**

 - Batch evaluations / Off-line analysis
 - On-line / realtime recognition
The Baseline

• **Has to be:**

 State-of-the-art
 Transparent („no“ optimisation)
 Reproducible
 Comprehensible

• **Should be:**

 Established by open-source tools
 Re-doable “at no effort” (e.g., batch scripts provided)
 Not overly optimised
 Beatable…
The Paper

- **The Essential**

 Describe it such that the participants know

- **The Secret Ingredient**

 Highlight one technical aspect to make it more interesting:

 IS 2009: Instance balancing / dynamic vs. static
 IS 2010: Multitask vs. single task / regression task
 IS 2011: Feature optimisation
 IS 2012: Effect of random seed (standard deviation)
 IS 2013: Detection
Evaluation

• **Saving work…**

 Have a web script for upload

 Not requiring codes and running them, but
 Keep right to ask for it

• **Ensure that**

 The servers is up

 You provide a “safe” deadline
The Workshop / Event / Session

• **Instruct the Participants**
 Write mail in advance
 Explain presentation format
 Potentially limit (e.g., no repetition of challenge conditions, data, etc.)

• **Choose format wisely**
 Poster session usually not suited – participants are curious to see others
 Short talks and intro / summary good choice

• **Keep the suspension**
 Consider announcing winners at end
 Lay out presentations in suited order
Awarding

• Make a Certificate

• Make a Dummy Cheque

INTER SPEECH 2012 Speaker Trait Challenge

<table>
<thead>
<tr>
<th>Award Cheque</th>
</tr>
</thead>
<tbody>
<tr>
<td>[EUR]</td>
</tr>
<tr>
<td>€</td>
</tr>
</tbody>
</table>

Pay to:

The order of (in words):

Drawer:

Authorized Signature:

Monday, September 10, 2012

Portland, Oregon, U.S.A.

Organizers of the Speaker Trait Challenge

• Award in the big Ceremony

• Put the Winners on the Web
Evaluation

- Fusion

 Late fusion (vote)

 Ask for confidences

 Determining optimal N

 Usually long-standing

 Upper benchmark

 Message: “Together we’re best”
Evaluation

- **Significance**

 Heavily depends on:

 # test instances
 % baseline

Evaluation

- **Q-Statistics**

 Pairwise measuring whether participants commit same errors on test

<table>
<thead>
<tr>
<th></th>
<th>Avg</th>
<th>#2</th>
<th>#3</th>
<th>#4</th>
<th>#5</th>
<th>#6</th>
<th>#7</th>
<th>#8</th>
<th>#9 (Nogueiras)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1 (Bone et al.)</td>
<td>.427</td>
<td>.598</td>
<td>.425</td>
<td>.461</td>
<td>.460</td>
<td>.428</td>
<td>.433</td>
<td>.395</td>
<td>.217</td>
</tr>
<tr>
<td>#2 (Bocklet et al.)</td>
<td>.657</td>
<td>.710</td>
<td>.752</td>
<td>.757</td>
<td>.690</td>
<td>.740</td>
<td>.651</td>
<td>.356</td>
<td></td>
</tr>
<tr>
<td>#3 (Höning et al.)</td>
<td>.754</td>
<td>.822</td>
<td>.941</td>
<td>.906</td>
<td>.946</td>
<td>.864</td>
<td>.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4 (Gajsek et al.)</td>
<td>.716</td>
<td>.836</td>
<td>.845</td>
<td>.880</td>
<td>.775</td>
<td>.358</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5 (Huang et al.)</td>
<td>.776</td>
<td>.917</td>
<td>.956</td>
<td>.885</td>
<td>.452</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6 (Ultes et al.)</td>
<td>.749</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7 (Baseline)</td>
<td>.782</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8 (Montacié and Caraty)</td>
<td>.706</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9 (Nogueiras)</td>
<td>.374</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continuity

• To turn it into a continued success...

 Make it consistent

 Use same EULA, format, conditions, etc.

 Alter … depending on last experiences
The Repository

- **Easy access to data**

 Make a page with info on past challenges

 Provide info for data access (contact persons, EULAs, etc.)

 Provide baseline feature sets (the ML community will appreciate it!)

 Make it a value way beyond the singular event

 Save yourself 1000 emails…

 And … really do it! (coming up some day soon for ComParE / AVEC…)
Wrap-Up

- **Organise a Challenge**

 Find great data
 Set clear rules
 Provide transparent redoable baselines
 Provide good infrastructure for data access, result upload, etc.

- **In the long run**

 Make a Special Issue
 Ensure consistency
 Make a repository
 Participate in other challenges
Experience ComParE / AVEC

• **# Participating Teams**

• **Some Observations**

 Fusion of best participant results exceeds individual winners throughout
 These “multiple-site” results are so far not reached by individual attempts
 Supra-segmental modelling of information prevails by far
 Only sparsely dynamic algorithms such as HMMs or DBNs
 Cross disciplines seems to be successful
 Great submissions outside competition, e.g., perception studies
Outlook
And Next...

- Big Data Multi-task DL
- 24/7 Coop Learning
- “Green” Learning
- Reinforced Learning
- Evolving Machines
- New Challenges
- Products!
Better Ideas?

- Special Issue on New Avenues in Knowledge Bases for Natural Language Processing of Knowledge-Based Systems, Elsevier
- "Emotion Representations and Modelling for Companion Technologies" (ERM4CT) workshop 2015 @ 17th ACM ICMI 2015, Seattle, WA, 09.-13.11.2015.
- AV+EC 2015, @ ACM Multimedia, Brisbane, Australia, 26.-30.10.2015.
- 1st International Workshop on Automatic Sentiment Analysis in the Wild (WASA 2015) @ ACII 2015, Xian, PR China, 21.09.2015.
- Special Session Socio-cognitive Language Processing @ 7th International Workshop on Spoken Dialogue Systems (IWSDS), Riekonlinna 2016.