Modeling socio-emotional agent

Catherine Pelachaud & GRETA Team
CNRS – LTCI
Telecom ParisTech

catherine.pelachaud@telecom-paristech.fr
Embodied Conversational Agents – ECAs are:

- **Embodied**: body with communicative capabilities
- **Autonomous**: they can plan what to say, know when to start a conversation, when to answer and when to take the conversation turn
- **Interactive**: react, adapt, be synchronized
- **Expressive**: display multimodal synchronized behaviors
Modelling ECAs:

- ECA’s cognitive and expressive capabilities simulate human capabilities
- Models are based on theories from human studies
- Several domains: linguistic, phonetics, cognitive science, emotion, psychology, and sociology
Embodied Conversational Agents: Application

- **Serious games:**
 - Training: job interview, intercultural communication
 - Social ability: bullying, shyness

- **Health & wellbeing**
 - Depression
 - Post-traumatic stress disorder (PTSD)
 - Autism

- **Education: virtual tutors**

- **Rehabilitation: speech therapy**

- **Companions**
Definition of communication (Allwood, 06)

- Not simply a transfer function
- Sharing anything between arbitrary entities where all entities are active, interacting with each other and within a social and interrelational context
- Not just words, but also
- Intonation and paralinguistic
- Facial expression, gaze, gesture, body movement, posture…
Communication

Belfast Naturalistic Database
Research questions & application

- **Research questions**
 - How to capture *variety and subtleness* of human behaviors?
 - Multimodal repertoire (communicative, emotional and social signals)
 - How to build a *sensitive interactive ECA*?
 - Human-ECA interaction
 - How to build an ECA that *copies and adapts* to user’s behavior?
 - Enhance sense of engagement

- **Application**
 - Virtual recruiter with social attitudes
GRETA PLATFORM

GRETA TEAM
Embodied conversational agent architecture:
- Different embodiments and agent representations
- Multimodal synchronized behaviors linked to intention & emotion
VIB: Human-Agent Interaction Platform

- Mental-Emotion model
- Dialog model
- Speaker listener Intent Planner
- Behavior Planner
- Behavior Realizer
- Perceptive space
- Motor Resonance
- Animation
- Gaze analyzer
- Facial Expression Analyzer
- Body analyzer
- Text analysis
- Speech recognition

GREET

Virtual agent

User's behavior detectors
COMMUNICATIVE, EMOTIONAL AND SOCIAL BEHAVIORS: BUILDING A REPERTOIRE
Go beyond static mono-modal expressions

Many emotions are expressed by sequences (or combination) of multimodal signals rather than monomodal signals (e.g., static facial expressions)

Data obtained from theory and literature:
(Keltner (1995); Shiota et al (2003); Rozin & Cohen (2003))

D. Keltner, B. N. Buswell
Embarrassment: Its Distinct Form and Appeasement Functions
Corpus of Emotional Displays

- Annotation of audio-visual recordings from reality shows, hidden camera recordings, Belfast Naturalistic database, EmoTV corpus, DVD Baron-Cohen.

- Multimodal coding:
 - Facial expression (FACS)
 - Gaze
 - Gesture
 - Body

Happiness
Definition of a representation scheme for emotional expression:

- signals description across modalities
- their partial temporal order
- their constraints

Behavior set: set of signals (frown, nod, torso backward, …)

Constraint set: describes the temporal and spatial constraints among the signals in the behavior set

- Temporal constraints: start-signal $s_i <$ end-signal s_j
- Spatial constraints: signals s_i and s_j cannot co-occur
Expressions of Emotions

Regret

Image of facial expressions with annotations for regret, showing changes in facial expressions with different Action Units (AUs) highlighted.
Validation study

- **Different conditions**
 - Static image
 - Single signal
 - MSE

- **Study**
 - 48 participants
 - Recognition task
 - 8 emotions:
 - anger, anxiety, cheerful, embarrassed, panic fear, pride, relief, tension

- **Higher recognition rate**
 - MSE
 - Except for Cheerfulness
Non adapted socio-emotional displays influence the user's evaluation of the agent negatively.

Appropriate socio-emotional displays increase the agent’s believability.

Importance of socio-emotional behaviors.
Social Signals

- Non adapted socio-emotional displays influence the user's evaluation of the agent negatively
- Appropriate socio-emotional displays increase the agent’s believability

importance of socio-emotional behaviors

- 2 studies:
 - Smile
 - Social Attitudes
Social Signals

- **Smile**
 well-recognized, rapidly perceived (Ekman)

- **Different meanings of smile (up to 50!)** (Hess)
 pleasure, amusement, politeness, embarrassment,…

- **Smile recognition: morphology and dynamism**

- **Effects of (positive) smile**
 - *Perception of a smiling human*: expressive, outgoing, relaxed, sociable, generous, trustworthy, warmer, attractive, intelligent, polite
 - *Perception of a smiling ECA*: convincing, credible, attractive, trustworthy
 - *Effects of smiling ECA on users*: motivation, enthusiasm, decision

(Rehm et al, 2005; Theonas et al. 2008; Krumhuber, 2007; Mehu, 2007; Frank et al. 1993)
Corpus-based approach: time consuming, expensive to collect and annotate

Crowdsourcing:

Outsourcing tasks to an undefined distributed group of people (Mason et al., 2011)

✓ Online tools for annotated human behaviors (Park et al., 2012)

- Toolbox
 - To create crowdsourcing tool
 - To build *rated corpus of virtual agent’s non-verbal behaviors*

Users directly configure the agent’s non-verbal behavior

Smile (Ochs)
Social attitude (Ravenet)
Online crowdsourcing tool to design virtual smiles

- 192 videos of virtual agents smiles
- Different morphological and dynamic characteristics

Users tasks
Design agent’s smiles

A video of the corpus showing the virtual agent’s smiling

Dynamic and morphological characteristics of smiles
Analysis of the collected data

Corpus of rated smiles (embarrassed, polite, amused)

Oversampling with participants' satisfaction

Machine Learning

Decision Tree

How a virtual agent should smile?

Morphological and dynamic characteristics of virtual character's smiles

Magalie Ochs, Radoslaw Niewiadomski, Catherine Pelachaud
Interpersonal attitudes = « spontaneous or strategically employed affective styles that colour interpersonal exchanges » (Scherer, 05)

Attitudes are expressed through multimodal behavior
- Numerous gestures, head up... → dominance
- Smiles, head tilt... → friendliness

But the meaning of a signal can be changed by other nearby signals: « No nonverbal cue is an ‘island’. It is continually surrounded by a host of nonverbal behaviors which together may delimit and clarify meaning » (Burgoon, 84)
- Smile followed by a gaze and head aversion...
- Frowning and crossing arms after a head tilt...
Objective and Methodology

- Develop attitude expression model for an Embodied Conversational Agent
 - Allow ECAs to vary their attitude through sequences of non-verbal behavior
 - Build sequential behavior planning model

Methodology

1. Data collection on attitude expression
2. Extraction of sequences of behavior conveying attitudes
3. Implementation of a sequence generation model
4. Validation
Mining a multimodal corpus for frequent non-verbal signals sequences

Non-verbal signals annotations

Non-verbal signals sequences mining methodology

NVB signals sequences expressing attitudes
Computational model of attitude expression

Sentence with communicative intentions (FML)

You are not fit for working with us.

DENY EMPHASIS

Attitude

Friendliness increase

Behavior planner attitude expression - Bayesian network

Non-verbal signals sequence (BML)

Friendly dominant
REALIZING HUMAN-AGENT INTERACTION: SEMAINE PLATFORM
“Sustained Emotionally coloured Machine-human Interaction using Nonverbal Expression”

Sensitive Artificial Listener - SAL:
- Subjects dialog with characters
- 4 Characters with 4 distinct emotional traits
- Goal of the application is to induce emotions in subjects

Our goal: model interactive ECAs with different emotional traits that can:
- produce appropriate backchannels
- sustain an emotionally colored communication with a user
Conversation setup

- One human, one ECA

- Analysis and synthesis of user’s nonverbal behavior
- Interpretation of their epistemic & affective state
The SAL concept

- Four characters with an emotional agenda
 - Obadiah tries to make users sad
 - Spike tries to make them angry
 - Poppy tries to make them happy
 - Prudence tries to make them reasonable

Arousal +

+ Valence

page 31
Consider trait models of personality

Individual differences in predisposition to experience certain emotions

Use of Eysenck’s model:
- Neuroticism - negative emotionality
- Extraversion - propensity towards positive emotion

Poppy is extraverted & optimistic
Spike is angry & argumentative
Prudence is pragmatic & practical
Obadiah is gloomy & depressed
System utterances are designed to elicit emotional responses

Baseline – agent’s global behaviour tendency

• modality preference…
 - e.g. face, head, gaze, gesture, torso
• …and behaviour expressivity
 - parameters influencing quality of movement - frequency, speed, spatial volume, energy, fluidity, & repetitivity
• expressivity parameters defined for each modality
Multimodal Behavior Lexicon

SAIBA

Virtual agent

User’s behavior detectors

Mental state + Emotion model

Dialog model

Facial Expression Analyzer

Body Analyzer

Prosody Analyzer

Text analysis

Speech recognition

SAIBA

Speaker/Listener Intent Planner

Behavior Planner

Behavior Realizer

Perceptive space

Motor Resonance

Animation

Dialog model

Dialog model

Dialog model

Dialog model
IMPACT OF AGENT’BEHAVIOR ON USER’S EXPERIENCE: LAUGHING AGENT
Laughter

- Laughter is an essential **social** signal in human-human communication.

- It can convey various functions:
 - Feedbacks to humorous stimuli or praised statements
 - Mask embarrassment
 - Social indicator of in-group belonging [Adelsward 1989]
 - Speech regulator during conversation [Provine 1996]
 - Elicit interlocutor’s laughter [Provine 1996]

- Endow virtual agent with social attitudes, in particular laughing capabilities

- Focus here on **hilarious** laughter
Laughter

- **Multimodal signals**
 - Breathing, shoulder, body, head
 - Leaning backward and forward
 - Exhalation and inhalation
 - Rhythmic body pattern
 - Shaking movement

- **Different tasks in a social context**
 - Watching funny clips
 - Play social games

- **Dataset:**
 - Motion capture + audio
 - Segmentation into laughter episodes
 - Pitch and Energy extracted with PRAAT
Multimodal animation model of laughter:

- Data-driven approach: capture link between audio and multimodal behaviors
 - Input: laughter audio features streams [Urbain et al. 2013]
 - pitch, energy, 12 laughter pseudo-phonemes including duration and intensity
 - Output: data streams of facial/body animation points (FAPs/BAPs)
Modeling one dimensional shaking-like movement
 • Capture *rhythmic* patterns during laughter [Ruch and Ekman 2001]

 Loop HMM

Taking into account the dependency with laughter audio
 • Inspired by *speech-to-animation* generators [Hofer2007, Busso2005]

 Transition Parameterized Loop HMM

Joint modelling of head and torso motions
 • Capture *strong correlation* between head and torso motions occurring in particular during exhalation phases [Ruch and Ekman 2001]

 Coupled Transition Parameterized Loop HMM
Study impact of laughter on human experience during a human-machine interaction

• Effect of dynamic coupling between interactants → enhances sense of engagement (Prepin et al., 2012)

• Behavior expressivity conveys affective content (Castellano et al, 2012)

• Copying paradigm: copying the expressivity dynamically as it evolves in human's performance.

• AIM: Study how a virtual agent able to copy and to adapt its laughing and expressive behaviors on the fly participates in enhancing user's experience in the interaction.
Music creation:
Motor resonance: 2 influences
- Input computed with Eyesweb (Camurri et al.)
 - User’s laughter intensity
 - User’s torso leaning
- Output
 - Global influence on agent’s laughter motion
 - Agent’s leaning motion
Video Example

Condition: No Copying

Agent does not copy user's laugh behavior quality
LoL – Evaluation study

Context

• 32 participants listen to funny music first without then with a virtual agent. The agent can laugh performing a prefixed behavior, or copying user’s laughter intensity.
• Evaluate user’s perception of music funniness
• Evaluate user’s mood during the experience
• Evaluate social and spatial presence, and believability of the virtual agent

Discussion

• Participants perceived the music as funnier when the agent was present and copied user’s laughter intensity, than when they listened to the music alone;
• Participants’ mood was more positive when the agent was present and copied user’s laughter intensity, than when they listened to the music alone;
• Participant’s mood was more positive when the agent laughed mimicking their laughter intensity, then when the agent laughed performing a prefixed behaviour.
APPLICATION: JOB INTERVIEW SIMULATOR
Young people Not in Education, Employment or Training (NEET) have a high risk of social exclusion in the EU, with approximately 20% of 18-25 year-olds lacking social skills for job interviews.
Social Coaching

- Enhancing skills in job interviews
- Time consuming and expensive!
- Fear of interacting with a human coach

TARDIS platform:
A serious game for practising job interviews with a virtual agent
+ A social coaching tool for inclusion associations
Tardis approach: 2 major components

1. Job interview simulation
2. Post-hoc debriefing

Diagram:
- Multimodal behavior recognition
- Vocal events
- Virtual recruiter
- Performance
- Recruiter affective model
- Attitudes
- Dialog act
- Expectations
- Scenario

Sabouret et al.
Tardis job interview simulation platform in use in national associations in FR, UK, DE

Does the Tardis approach help youngsters improve their job interview skills?

(by UCL IOE partner of the Tardis project)

Significant improvement in verbal and non-verbal behavior

- Depth of answer
- Eye contact, tone of voice, facial expressions
Conclusion

- Importance of socio-emotional signals
- Richness of the repertoire
- Interactive behaviors
- Dynamic coupling between interactants
Any questions?

Greta Team
CNRS LTCI – Télécom ParisTech - France