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(Dollé et al., 2010)
(Caluwaerts et al., 2012a,b)

4 Conclusion



Plan Introduction Strategies Interaction Conclusion

Multiple reinforcement learning algorithms /
behavioral strategies / navigation methods

Reinforcement learning, as formalized in AI:

has been quite successful at explaining animal behavior in
instrumental conditioning,
has interesting links with the physiology of dopamine.

Different families of algorithms predict different adaptation
patterns to changes.

This is quite obvious in navigation tasks, where multiple
strategies are used by animals.

But navigation also invites us to investigate:

how multiple RL systems can collaborate,
behavioral systems beyond RL.
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Reinforcement Learning formalism

Environment

reward
r(t)

state
s(t)

action
a(t)

π (s,a)Agent

Unsupervised learning

occasional reward/punishment feedback,

no precise information about the changes to be made,

long sequences can cause the reinforcement feedback:
temporal credit assignment problem

Numerous algorithms (Sutton & Barto, 1998).
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Reinforcement Learning formalism

Environment

reward
r(t)

state
s(t)

action
a(t)

π (s,a)Agent

Goal

Find the policy π(s, a) maximizing the return R.

Often formalized as:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γk rt+k+1, with 0 < γ < 1
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Model-based & Model-free learning algorithms

(Daw et al., 2005, Nat. Neurosci.)
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Model-free RL (Actor/Critic example)

Environment

state
s(t)

action
a(t)

reward
r(t)

Agent

TD error
δ

Actor

Critic
P(s)

π (s,a)

An example of
temporal-difference (TD)
learning algorithms.
Sutton’s PhD thesis (1984) :

The Critic learns to predict
the value Pt of each state,
so that Pt → Rt .

The actor modifies its policy
when feedbacks do not
correspond to predictions.
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Reward Prediction Error

Should the Critic predict correctly, we should have:

Pt−1 = Rt−1 = rt+ γrt+1+ γ2rt+2+ γ3rt+3 + ...
Pt = Rt = rt+1+ γrt+2+ γ2rt+3 + ...

thus, we should have:

Pt−1 = rt + γPt

if not, there is a reward prediction error (RPE):

δ = rt + γPt − Pt−1

If δ < 0, predictions should be decreased (C), and probability of
last action selection should decrease (A).
If δ > 0, predictions should be increased (C), and probability of
last action selection should increased (A).
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What about the brain? (Schultz et al., 1997)

Dopaminergic neurons δt = rt + γPt − Pt−1

R : rt = 0 expected, Pt−1 = γPt

δ = R

CS : unpredictable stimulus
δ = R

R : rt = R expected,
Pt−1 = R + γPt

δ = 0

CS : δ = R

R : rt = R expected,
Pt−1 = R + γPt

δ = −R
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Model based-RL

If the agent tries to build a model of the world:

reward model: which states provide rewards or punishments?

transition model: in which state do you end-up after doing
action a in state s?

It can be exploited to directly estimate the values of states and the
optimal policy (with a process akin to planning).

(more details to come)



Plan Introduction Strategies Interaction Conclusion

Neural substrate of Navigation



Plan Introduction Strategies Interaction Conclusion

Neural substrate of Navigation



Plan Introduction Strategies Interaction Conclusion

Plan

1 Introduction
Goal
Model-based & Model-free RL
Neural substrate of Navigation

2 Navigation strategies
Taxonomies
Navigation strategies: what & how?

3 Multiple system interactions
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Complexity/Flexibility

(Arleo & Rondi-Reig, 2007)



Plan Introduction Strategies Interaction Conclusion

model-free/model-based 6= map-based/map-free

(Khamassi, 2007)
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Stimulus triggered response

R

characteristics

a stimulus
⇒ an action,

model-free RL.
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Stimulus triggered response

Sensory Input

(sound, light, object, 

wall configuration, etc.)

Initial

Random

Weights

Locomotor Action

characteristics

a stimulus
⇒ an action,

model-free RL.
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Stimulus triggered response

Sensory Input

(sound, light, object, 

wall configuration, etc.)

Locomotor Action

Turn Right

characteristics

a stimulus
⇒ an action,

model-free RL.



Plan Introduction Strategies Interaction Conclusion

Stimulus triggered response

Sensory Input

(sound, light, object, 

wall configuration, etc.)

No Reward

Locomotor Action

characteristics

a stimulus
⇒ an action,

model-free RL.
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Stimulus triggered response

Sensory Input

(sound, light, object, 

wall configuration, etc.)

Reward

Locomotor Action

characteristics

a stimulus
⇒ an action,

model-free RL.
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Target approach

Platform

Characteristics

target visible (US)
⇒ pre-wired motor response,

calibration :
supervised learning.

neural substrate:
superior colliculus (Felsen &
Mainen, 2008).
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Cue approach

Platform

Hidden��
��
��

��
��
��

Characteristics

cue visible (CS)
⇒ learn to select the
relevant sensory information
⇒ no need to learn motor
response,

sensory information filtering:
model free RL.
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Path integration

Characteristics

integration wrt. an origin,

inversion: direct return path,

no learning,

mechanism no well known
yet, involves the grid cells
(Hafting et al., 2005),

wich encode position (Fiete
et al. 2008, Masson &
Girard, 2009).

Integration of
movements:
accumulates errors
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Path integration

Orientation
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Praxic strategy

Characteristics

(Watson, 1907; Honzic,
1936) : blind, deaf rats,
without smell and whiskers
learn to solve the maze
without touching walls.
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Praxic strategy

Characteristics

(Watson, 1907; Honzic,
1936) : blind, deaf rats,
without smell and whiskers
learn to solve the maze
without touching walls.

(Carr & Watson, 1908) :
they hit the wall if the
corridors are shortened.

can be learn by imitation of
another strategy (Hebbian
learning sufficient).
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Place Recognition Triggered Response

Platform

Hidden

Distal Cues

��
��
��
��

Characteristics

Place ⇒ action

place representation.

model-free RL (same
algorithm, different inputs).
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Place Recognition Triggered Response

Distal Cues

R=1

��
��
��

��
��
��

Characteristics

Place ⇒ action

model-free RL (same
algorithm, different inputs).

Slow to converge.
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Place Recognition Triggered Response
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Place Recognition Triggered Response
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Place ⇒ action

model-free RL (same
algorithm, different inputs).

Slow to converge.
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model-free RL (same
algorithm, different inputs).

Slow to converge.

Difficult to adapt to
changes.
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Planning

Distal Cues Characteristics

Build a world-model:
reward and transition
functions.

transitions can be learnt
latently.
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Model-based & Model-free learning algorithms

Interactions of model-based and model-free learning algorithms to
explain intrumental conditioning (Daw et al., 2005, Nat. Neurosci. ;
Keramati et al., 2011, PLoS Comput. Biol.).
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Coordination of multiple RL systems: fusion or
selection?

Strategy

Combination

Direction

Selection

Direction

Selection

Strategy

Selection

(Foster et al., 00)
(Chavarriaga et al., 05)
(Daw et al., 05)
(Dolle et al., 10)
(Keramati et al., 11)

(Pezzulo et al., 13)
(Caluwaerts et al., 12a,b)
(Hasson et al., 11)

(Viejo et al., 15)

(Girard et al., 05)
(Guazzelli et al., 98)

(Renaudo et al., 15)
(Hanoune et al., 15)
(Collins & Frank, 12)

Strategy 1 Strategy 2

?

Strategy 1 Strategy 2
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(Dollé et al., 2010): Strategies

Platform

Distal Cues

��
��
��

��
��
��

(Dollé et al., 2010, Biological Cybernetics, 103(4):299–317)
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(Dollé et al., 2010): Arbitration mechanism

parallel neural substrates,

adaptive coordination
(model-free RL),

combines different learning
algorithms (model-based,
model-free, etc.),

exhibits cooperation and
competition,

exploration regulation.



Plan Introduction Strategies Interaction Conclusion

Reproduction of (Pearce et al., 1998)
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(Caluwaerts et al., 12a,b): Strategies

Platform

Hidden��
��
��

��
��
��

Distal Cues

��
��
��

��
��
��

(Caluwaerts, Staffa, N’Guyen, Grand, Dollé, Favre-Felix, Girard & Khamassi (2012).
Bioinspiration & Biomimetics. Vol 7(2):025009.)
(Caluwaerts, Favre-Felix, Staffa, N’Guyen, Grand, Girard & Khamassi, (2012). Living
Machines 2012, LNAI 7375/2012, p. 62-73.)
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(Caluwaerts et al., 12a,b): Results

Results

Appropriate strategy selection wrt. efficiency.
Context detection algorithm for an enhanced adaptation to task
changes.
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Coordination criteria in current models

Coordination: predetermined (e.g. Guazzelli, Girard) or adaptive
(e.g. Foster, Chavarriaga, Dollé).
Criteria :

Reward prediction,

Reward prediction error,

Estimated uncertainty.

BUT few strategies involved in general (2-3)
To be explored:

Changes in average reward rates,

Entropy of value distributions, and evolution,

Computational cost, etc.
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Wrap-up

Take-home messages

Multiple RL algorithm families have been developed in AI.

They appear to be good models of animal behavior (& links
with neural substrate).

The exact operation and the neural substrate of multiple
decision systems coordination are still unknown.

All RL algorithms are useful to explain navigation behaviors.

BUT Navigation tells us that RL is not the only way to make
a decision.



Plan Introduction Strategies Interaction Conclusion

Bibliography

Arleo & Gerstner (2000). Spatial cognition and neuro-mimetic navigation: a model of hippocampal place
cell activity. Biological Cybernetics, 83(3):287–300.

Arleo & Rondi-Reig (2007). Multimodal sensory integration and concurrent navigation strategies for spatial
cognition in real and artificial organisms. J Integr Neurosci. 6(3):327–366.
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Khamassi, Lachèze, Girard, Berthoz, & Guillot (2005). Actor-critic models of reinforcement learning in the
basal ganglia: From natural to artificial rats. Adaptive Behavior. 13(2):131-148.

Khamassi, Martinet, Guillot (2006) Self-organising maps with mixture of exprets: Application to an
Actor-Critic Model of reinforcement Learning in the basal Ganglia, In SAB 2006, Springer Verlag.
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