Plan

Strategies

Interaction

Conclusion

SMART School on Computational Social and Behavioral Sciences Reinforcement learning in animals, from the standpoint of navigations

Benoît Girard

benoit.girard@isir.upmc.fr Institut des Systèmes Intelligents et de Robotique (ISIR)

September 2017

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Plan				

- Goal
- Model-based & Model-free RL
- Neural substrate of Navigation
- Navigation strategies
 - Taxonomies
 - Navigation strategies: what & how?
- 3 Multiple system interactions
 - (Dollé et al., 2010)
 - (Caluwaerts et al., 2012a,b)

4 Conclusion

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Plan				

- Goal
- Model-based & Model-free RL
- Neural substrate of Navigation
- Navigation strategies
 - Taxonomies
 - Navigation strategies: what & how?
- Multiple system interactions
 - (Dollé et al., 2010)
 - (Caluwaerts et al., 2012a,b)

Conclusion

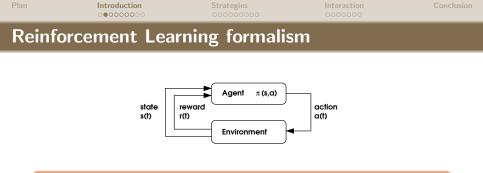
Multiple reinforcement learning algorithms / behavioral strategies / navigation methods

Introduction

- Reinforcement learning, as formalized in AI:
 - has been quite successful at explaining animal behavior in instrumental conditioning,
 - has interesting links with the physiology of dopamine.
- Different families of algorithms predict different adaptation patterns to changes.
- This is quite obvious in navigation tasks, where multiple strategies are used by animals.
- But navigation also invites us to investigate:
 - how multiple RL systems can collaborate,
 - behavioral systems beyond RL.

Unsupervised learning

- occasional reward/punishment feedback,
- no precise information about the changes to be made,
- long sequences can cause the reinforcement feedback: temporal credit assignment problem
- Numerous algorithms (Sutton & Barto, 1998).



Goal

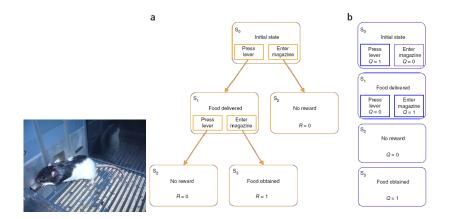
Find the policy $\pi(s, a)$ maximizing the return R.

Often formalized as:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}, \text{ with } 0 < \gamma < 1$$

Plan Introduction Strategies Interaction Conclusion

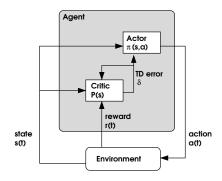
Model-based & Model-free learning algorithms



(Daw et al., 2005, Nat. Neurosci.)

 Plan
 Introduction
 Strategies
 Interaction
 Conch

 Model-free RL (Actor/Critic example)



An example of temporal-difference (TD) learning algorithms. Sutton's PhD thesis (1984) :

- The Critic learns to predict the value P_t of each state, so that $P_t \rightarrow R_t$.
- The actor modifies its policy when feedbacks do not correspond to predictions.

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Reward	d Prediction	Error		

Should the Critic predict correctly, we should have:

$$\begin{array}{rcl} P_{t-1} = & R_{t-1} = & r_t + & \gamma r_{t+1} + & \gamma^2 r_{t+2} + & \gamma^3 r_{t+3} + \dots \\ P_t = & R_t = & & r_{t+1} + & \gamma r_{t+2} + & \gamma^2 r_{t+3} + \dots \end{array}$$

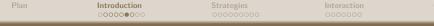
thus, we should have:

$$P_{t-1} = r_t + \gamma P_t$$

if not, there is a reward prediction error (RPE):

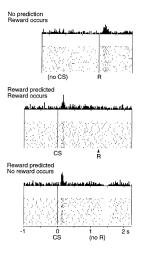
$$\delta = r_t + \gamma P_t - P_{t-1}$$

If $\delta < 0$, predictions should be decreased (C), and probability of last action selection should decrease (A). If $\delta > 0$, predictions should be increased (C), and probability of last action selection should increased (A).



Dopaminergic neurons

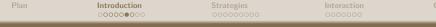
$$\delta_t = r_t + \gamma P_t - P_{t-1}$$



- R : $r_t = 0$ expected, $P_{t-1} = \gamma P_t$ $\delta = R$
- CS : unpredictable stimulus $\delta = R$

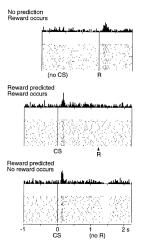
•
$$R: r_t = R$$
 expected,
 $P_{t-1} = R + \gamma P_t$
 $\delta = 0$

• CS : $\delta = R$ • R : $r_t = R$ expected, $P_{t-1} = R + \gamma P_t$ $\delta = -R$



Dopaminergic neurons

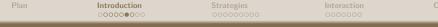
$$\delta_t = r_t + \gamma P_t - P_{t-1}$$



- R : $r_t = 0$ expected, $P_{t-1} = \gamma P_t$ $\delta = R$
- CS : unpredictable stimulus $\delta = R$

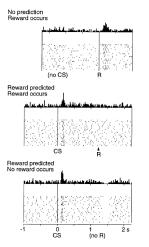
•
$$R: r_t = R$$
 expected,
 $P_{t-1} = R + \gamma P_t$
 $\delta = 0$

• CS : $\delta = R$ • R : $r_t = R$ expected, $P_{t-1} = R + \gamma P_t$ $\delta = -R$



Dopaminergic neurons

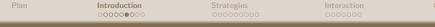
$$\delta_t = r_t + \gamma P_t - P_{t-1}$$



- R : $r_t = 0$ expected, $P_{t-1} = \gamma P_t$ $\delta = R$
- CS : unpredictable stimulus $\delta = R$

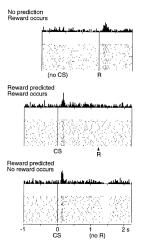
• R:
$$r_t = R$$
 expected,
 $P_{t-1} = R + \gamma P_t$
 $\delta = 0$

- CS : $\delta = R$
- R : $r_t = R$ expected, $P_{t-1} = R + \gamma P_t$ $\delta = -R$



Dopaminergic neurons

$$\delta_t = r_t + \gamma P_t - P_{t-1}$$



- R : $r_t = 0$ expected, $P_{t-1} = \gamma P_t$ $\delta = R$
- CS : unpredictable stimulus $\delta = R$

•
$$R: r_t = R$$
 expected,
 $P_{t-1} = R + \gamma P_t$
 $\delta = 0$

- CS : $\delta = R$
- R: $r_t = R$ expected, $P_{t-1} = R + \gamma P_t$ $\delta = -R$

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Mode	el based-RL			

If the agent tries to build a model of the world:

- reward model: which states provide rewards or punishments?
- **transition model**: in which state do you end-up after doing action *a* in state *s*?

It can be exploited to directly estimate the values of states and the optimal policy (with a process akin to planning).

(more details to come)

Plan

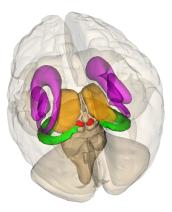
Introduction

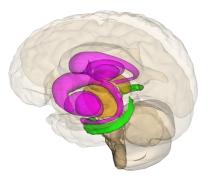
Strategies

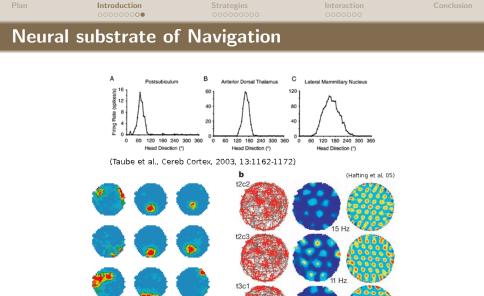
Interaction

Conclusion

Neural substrate of Navigation







1 m

19 Hz

1 m

1 m

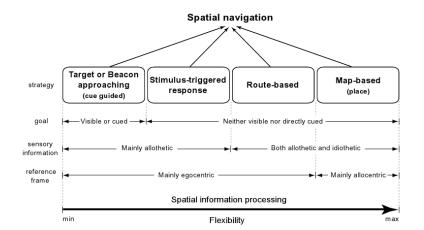
Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Plan				

Introduction

- Goal
- Model-based & Model-free RL
- Neural substrate of Navigation

Navigation strategies

- Taxonomies
- Navigation strategies: what & how?
- Multiple system interactions
 - (Dollé et al., 2010)
 - (Caluwaerts et al., 2012a,b)



⁽Arleo & Rondi-Reig, 2007)

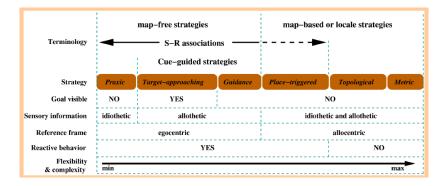
Introduct

Strategies

Interaction

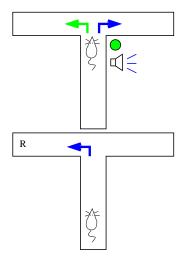
Conclusion

model-free/model-based \neq map-based/map-free



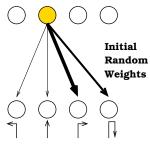
(Khamassi, 2007)

Stimulus triggered response



- a stimulus
 - \Rightarrow an action,
- model-free RL.

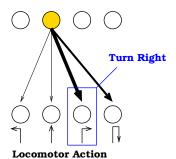
Sensory Input (sound, light, object, wall configuration, etc.)



Locomotor Action

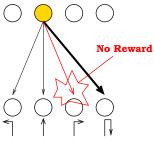
- a stimulus
 - \Rightarrow an action,
- model-free RL.

Sensory Input (sound, light, object, wall configuration, etc.)



- a stimulus
 - \Rightarrow an action,
- model-free RL.

Sensory Input (sound, light, object, wall configuration, etc.)

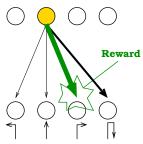


characteristics

- a stimulus
 - \Rightarrow an action,
- model-free RL.

Locomotor Action

Sensory Input (sound, light, object, wall configuration, etc.)



characteristics

- a stimulus
 - \Rightarrow an action,
- model-free RL.

Locomotor Action

P		

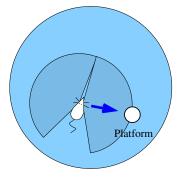
troduction

Strategies

Interaction

Conclusion

Target approach



- target visible (US)
 - \Rightarrow pre-wired motor response,
- calibration : supervised learning.
- neural substrate: superior colliculus (Felsen & Mainen, 2008).

P		

Introductio

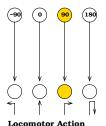
Strategies

Interaction

Conclusion

Target approach

Topological Sensory Input (visual, somatosensory, auditory input)



- target visible (US)
 ⇒ pre-wired motor response,
- calibration : supervised learning.
- neural substrate: superior colliculus (Felsen & Mainen, 2008).

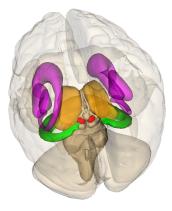
ntroduction

Strategies

Interaction

Conclusion

Target approach



- target visible (US)
 - \Rightarrow pre-wired motor response,
- calibration : supervised learning.
- neural substrate: superior colliculus (Felsen & Mainen, 2008).

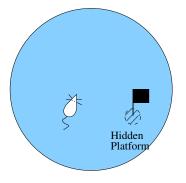
ntroduction

Strategies

Interaction

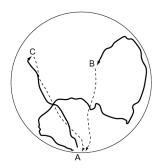
Conclusion

Cue approach



- cue visible (CS)
 ⇒ learn to select the relevant sensory information
 ⇒ no need to learn motor response,
- sensory information filtering: model free RL.

Plan	Introduction 00000000	Strategies ○○○○●○○○	Interaction 0000000	Conclusion
Path i	ntegration			

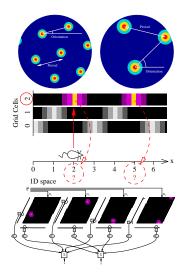


- integration wrt. an origin,
- inversion: direct return path,
- no learning,
- mechanism no well known yet, involves the grid cells (Hafting et al., 2005),
- wich encode position (Fiete et al. 2008, Masson & Girard, 2009).
- Integration of movements: accumulates errors

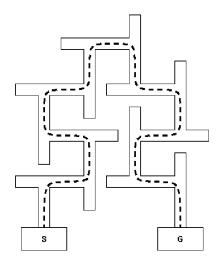
itroduction

Strategies

Path integration

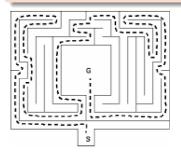


- integration wrt. an origin,
- inversion: direct return path,
- no learning,
- mechanism no well known yet, involves the grid cells (Hafting et al., 2005),
- wich encode position (Fiete et al. 2008, Masson & Girard, 2009).
- Integration of movements: accumulates errors

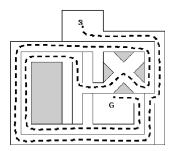


Characteristics

 (Watson, 1907; Honzic, 1936) : blind, deaf rats, without smell and whiskers learn to solve the maze without touching walls.



Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Praxie	c strategy			

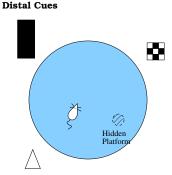


- (Watson, 1907; Honzic, 1936) : blind, deaf rats, without smell and whiskers learn to solve the maze without touching walls.
- (Carr & Watson, 1908) : they hit the wall if the corridors are shortened.
- can be learn by imitation of another strategy (Hebbian learning sufficient).

 Plan
 Introduction
 Strategies
 Interaction
 Conclusion

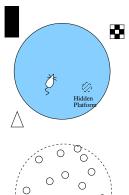
 000000000
 00000000
 00000000
 00000000

Place Recognition Triggered Response



- Place \Rightarrow action
- place representation.
- model-free RL (same algorithm, different inputs).

Place Recognition Triggered Response

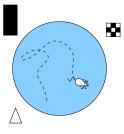


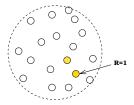
- Place \Rightarrow action
- place representation.
- model-free RL (same algorithm, different inputs).

Plan Introduction Strategies Interaction Co

Place Recognition Triggered Response

Distal Cues



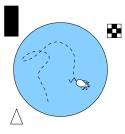


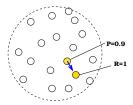
- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.

Plan Introduction Strategies Interaction Construction Con

Place Recognition Triggered Response

Distal Cues



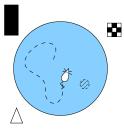


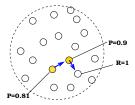
- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.

Plan Introduction Strategies Interaction Conclusion

Place Recognition Triggered Response

Distal Cues





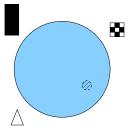
- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.

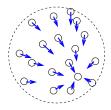
 Plan
 Introduction
 Strategies
 Interaction
 Conclusion

 000000000
 00000000
 00000000
 00000000

Place Recognition Triggered Response

Distal Cues



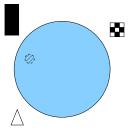


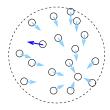
- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.

Plan Introduction Strategies Interaction Conclusio

Place Recognition Triggered Response

Distal Cues



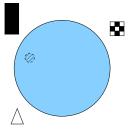


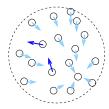
- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.
- Difficult to adapt to changes.

Plan Introduction Strategies Interaction Conclusio

Place Recognition Triggered Response

Distal Cues

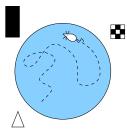


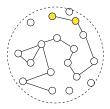


- Place \Rightarrow action
- model-free RL (same algorithm, different inputs).
- Slow to converge.
- Difficult to adapt to changes.

Plan	Introduction 000000000	Strategies ○○○○○○○●	Interaction 0000000	Conclusion
Planning	<u>z</u> .			

Distal Cues

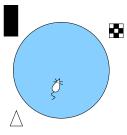


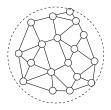


- Build a world-model: reward and transition functions.
- transitions can be learnt latently.

Plan	Introduction	Strategies ○○○○○○○●	Interaction 0000000	Conclusion
Planning	ξ			

Distal Cues

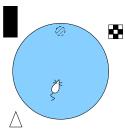


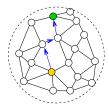


- Build a world-model: reward and transition functions.
- transitions can be learnt latently.

Plan	Introduction 000000000	Strategies ○○○○○○○●	Interaction 0000000	Conclusion
Planning	<u>o</u> r			

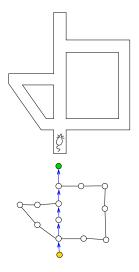
Distal Cues





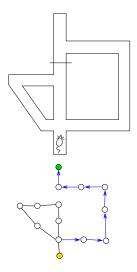
- Build a world-model: reward and transition functions.
- transitions can be learnt latently.
- computation-heavy planning.
- very adaptive to changes.

Plan	Introduction 000000000	Strategies ○○○○○○○●	Interaction 0000000	Conclusion
Planning	Σ.			



- Build a world-model: reward and transition functions.
- transitions can be learnt latently.
- computation-heavy planning.
- very adaptive to changes.

Plan	Introduction	Strategies ○○○○○○○●	Interaction 0000000	Conclusion
Plannin	g			



- Build a world-model: reward and transition functions.
- transitions can be learnt latently.
- computation-heavy planning.
- very adaptive to changes.

Plan	Introduction	Strategies	Interaction	Conclusion
Plan				

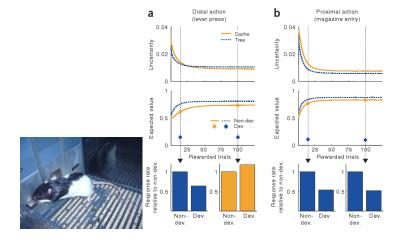
Introduction

- Goal
- Model-based & Model-free RL
- Neural substrate of Navigation
- Navigation strategies
 - Taxonomies
 - Navigation strategies: what & how?
- Multiple system interactions
 - (Dollé et al., 2010)
 - (Caluwaerts et al., 2012a,b)

4 Conclusion

Model-based & Model-free learning algorithms

Interactions of model-based and model-free learning algorithms to explain intrumental conditioning (Daw et al., 2005, Nat. Neurosci. ; Keramati et al., 2011, PLoS Comput. Biol.).



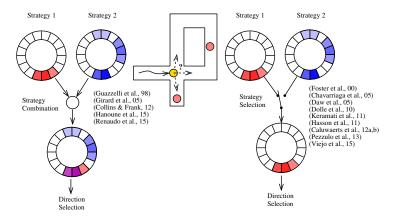
Introductio

Strategies

Interaction

Conclusion

Coordination of multiple RL systems: fusion or selection?



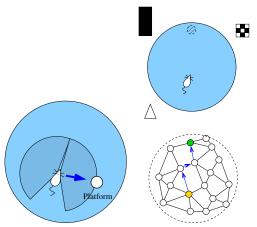
Introdu

Strategies

Interaction

Conclusion

(Dollé et al., 2010): Strategies



Distal Cues

(Dollé et al., 2010, Biological Cybernetics, 103(4):299-317)

Plan

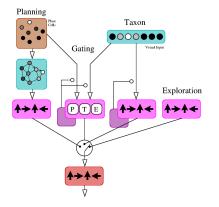
Introductio

Strategies

Interaction

Conclusion

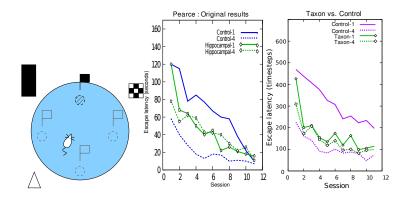
(Dollé et al., 2010): Arbitration mechanism



- parallel neural substrates,
- adaptive coordination (model-free RL),
- combines different learning algorithms (model-based, model-free, etc.),
- exhibits cooperation and competition,
- exploration regulation.

Plan Introduction Strategies Interaction Conclusion

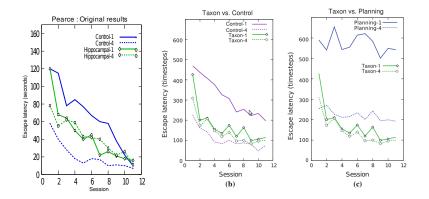
Reproduction of (Pearce et al., 1998)



4 trials, 11 sessions. Control vs. hippocampal rats.

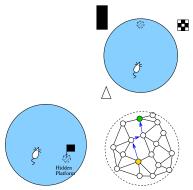
Plan Introduction Strategies Interaction Conclusion

Reproduction of (Pearce et al., 1998)



4 trials, 11 sessions. Control vs. hippocampal rats.

Distal Cues



(Caluwaerts, Staffa, N'Guyen, Grand, Dollé, Favre-Felix, Girard & Khamassi (2012). Bioinspiration & Biomimetics. Vol 7(2):025009.) (Caluwaerts, Favre-Felix, Staffa, N'Guyen, Grand, Girard & Khamassi, (2012). Living Machines 2012, LNAI 7375/2012, p. 62-73.) Plan

ntroduction

Strategies

Interaction

Conclusion

(Caluwaerts et al., 12a,b): Results

Results

Appropriate strategy selection wrt. efficiency. Context detection algorithm for an enhanced adaptation to task changes. Plan

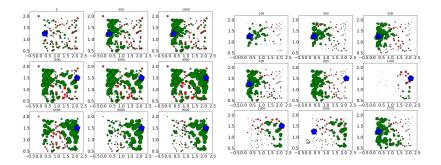
duction

Strategies

Interaction

Conclusion

(Caluwaerts et al., 12a,b): Results



Results

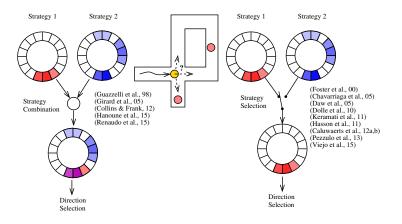
Appropriate strategy selection wrt. efficiency. Context detection algorithm for an enhanced adaptation to task changes. Introduction

Strategies

Interaction

Conclusion

Coordination of multiple RL systems: fusion or selection?



Coordination criteria in current models

Coordination: predetermined (e.g. Guazzelli, Girard) or adaptive (e.g. Foster, Chavarriaga, Dollé). Criteria :

- Reward prediction,
- Reward prediction error,
- Estimated uncertainty.

BUT few strategies involved in general (2-3) To be explored:

- Changes in average reward rates,
- Entropy of value distributions, and evolution,
- Computational cost, etc.

Plan	Introduction 000000000	Strategies 00000000	Interaction 0000000	Conclusion
Plan				

Introduction

- Goal
- Model-based & Model-free RL
- Neural substrate of Navigation
- Navigation strategies
 - Taxonomies
 - Navigation strategies: what & how?
- Multiple system interactions
 - (Dollé et al., 2010)
 - (Caluwaerts et al., 2012a,b)

Conclusion

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Wrap-up				

Take-home messages

- Multiple RL algorithm families have been developed in AI.
- They appear to be good models of animal behavior (& links with neural substrate).
- The exact operation and the neural substrate of multiple decision systems coordination are still unknown.
- All RL algorithms are useful to explain navigation behaviors.
- BUT Navigation tells us that RL is not the only way to make a decision.

lan	Introduction	Strategies	Interaction	Conclusion

Bibliography

- Arleo & Gerstner (2000). Spatial cognition and neuro-mimetic navigation: a model of hippocampal place cell activity. *Biological Cybernetics*, 83(3):287–300.
- Arleo & Rondi-Reig (2007). Multimodal sensory integration and concurrent navigation strategies for spatial cognition in real and artificial organisms. J Integr Neurosci. 6(3):327–366.
- Caluwaerts, Staffa, N'Guyen, Grand, Dollé, Favre-Felix, Girard & Khamassi (2012a). A biologically inspired meta-control navigation system for the Psikharpax rat robot. *Bioinspiration & Biomimetics*. Vol 7(2):025009.
- Caluwaerts, Favre-Felix, Staffa, N'Guyen, Grand, Girard & Khamassi (2012b). Neuro-inspired navigation strategies shifting for robots: Integration of a multiple landmark taxon strategy. *Living Machines 2012*, Prescott, T.J. et al. (Eds.). LNAI 7375/2012, Pages 62-73.
- Chavarriaga, Strösslin, Sheynikhovich & Gerstner (2005). A Computational Model of Parallel Navigation Systems in Rodents. Neuroinformatics. 3(3):223-242.
- Daw, Niv & Dayan (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neurosci. 8(12):1704–1711.
- Dollé, Khamassi, Girard, Guillot & Chavarriaga (2008). Analyzing interactions between navigation strategies using a computational model of action selection. In Spatial Cognition VI. LNCS:71–86, Springer.
- Dollé, Sheynikhovich, Girard, Chavarriaga, Guillot (2010a). Path planning versus cue responding: a bioinspired model of switching between navigation strategies. *Biological Cybernetics*. 103(4):299–317.
- Dollé, Sheynikhovich, Girard, Ujfalussy, Chavarriaga, & Guillot (2010b). Analyzing interactions between cue-guided and place-based navigation with a computational model of action selection: Influence of sensory cues and training. From animals to animats 11, Springer. LNAI 6226:335–346.
- Fiete, Burak, & Brookings (2008). What grid cells convey about rat location. J Neurosci, 28(27):6858.
- Foster, Morris & Dayan (2000). Models of Hippocampally Dependent Navigation using the Temporal Difference Learning Rule. *Hippocampus*. 10:1–16.
- Gaussier, Revel, Banquet, Babeau (2002). From view cells and place cells to cognitive map learning: processing stages of the hippocampal system. *Biological Cybernetics* 86(1):15–28.
- Girard, Filliat, Meyer, Berthoz & Guillot (2005). Integration of navigation and action selection functionalities in a computational model of cortico-basal ganglia-thalamo-cortical loops. Adaptive Behavior, 13(2):115–130.

Plan	Introduction	Strategies	Interaction 0000000	Conclusion
Bibliogra	phy			

- Guazzelli, Corbacho, Bota & Arbib (1998). Affordances, Motivation, and the World Graph Theory. Adaptive Behavior. 6(3/4):435–471.
- Jaeger & Hass (2004). Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science 304(5667):78–80.
- Khamassi, Lachèze, Girard, Berthoz, & Guillot (2005). Actor-critic models of reinforcement learning in the basal ganglia: From natural to artificial rats. Adaptive Behavior. 13(2):131-148.
- Khamassi, Martinet, Guillot (2006) Self-organising maps with mixture of exprets: Application to an Actor-Critic Model of reinforcement Learning in the basal Ganglia, In SAB 2006, Springer Verlag.
- Khamassi (2007). Rôles complémentaires du cortex préfrontal et du striatum dans l'apprentissage et le changement de stratégies de navigation fondées sur la récompense chez le rat. Thèse de doctorat UPMC.
- Martinet, Fouque, Passot, Meyer & Arleo (2008). Modelling the cortical columnar organisation for topological state-space representation, and action planning, In SAB 2008, 5040:137–147, Springer-Verlag.
- Masson and Girard (2009). Decoding the Grid Cells for Metric Navigation Using the Residue Numeral System. ICCN2009. Hangzhou, P.R. China.
- Sussillo & Abbott (2009). Generating Coherent Patterns of Activity from Chaotic Neural Networks. Neuron 63:544–557.