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Who are we / Introduction 

At batvoice we analyze and predict the outcome of sales 
and service calls to optimize customer relations



What do we do / Introduction 

Black hole in the customer journey

?
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What do we do / Use cases 

● Entreparticuliers: broker deals between individual property
owners and prospective buyers

● Activity split between digital and phone



What do we do / Use cases 

● Sales call: SMS callback (highly qualified calls), conversion 
rate ~10%

● Calls usually short ( < 5 min), but can last up to an hour



What do we do / Use cases 

● Challenge: predict the likelihood of conversion @ the 
beginning of the call, and notify the sales agent

● From then: give up (no dice!), keep going, change strategy



How do we proceed?



● Some measures are local (e.g. tone, text content)

● They have to be attributed to one speaker

● Hence the need for diarization

How do we proceed / Diarization



● In our case, we usually have only two speakers
● This makes a huge difference!

● Various algorithms exist to perform diarization

● They all amount to building features representative of the 
voice at a given time…

How do we proceed / Diarization
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How do we proceed / Diarization



● … Then group features into homogeneous segments

● Related to a given speaker

● Which is done (here) using nonnegative matrix factorization 
(NMF): V≈WH 

How do we proceed / Diarization



● Separating two speakers is not enough

● Interaction/social parameters need to be associated with 
the role of a given speaker
● Client, agent?

● This might be complex (discourse related)

● Cross-identification is possible in real world schemes

How do we proceed / Speaker identification



● Tone is generally considered to be related with 
physiological parameters
● Vocal tract, glottal source

● These parameters directly affect audio production

● Hence are encoded in low level audio features
● Energy frequency repartition, variations
● See (e.g.) GEMAPS

● We can train emotion predictors with these features, or 
keep them for higher level predictions

How do we proceed / Low level features



● Problem: the number of extracted low-level features 
directly depends on audio length

● This is impractical for classical learning algorithm, which 
require fixed-length entries

● It’s unrealistic to make “global” predictions from such local 
features

How do we proceed / Low level features



● Therefore, low-level features are transformed using 
statistical functionals
● Percentile, ranges, slopes, …
● Fixed length
● Also accounts for tendencies

● Aggregation is always made speaker by speaker!
● But also at a sentence level

How do we proceed / Low level features



● Interaction can be measured in numerous ways:
● How long each one speaks?
● How are speaking turns distributed?
● How does prosody vary across speaking turns?
● How much time does each one take to react?
● Can we measure influence/ascendency?

● Numerical data are also aggregated to avoid dependency 
on the number of turns

How do we proceed / Interaction features



● Gender is known to affect interactions outcomes

● Gender affects physiological parameters involved in voice 
production

● Predictors can be trained, that take audio recording as 
input
● Solved problem

How do we proceed / Social features



● Age is known to affect interactions outcomes

● Age affects physiological parameters involved in voice 
production
● Vocal tract volume increments

● Predictors can be trained, that take audio recording as 
input
● Still in development

How do we proceed / Social features



● Imagine you are listening to a conversation in an unknown 
language:
● Interaction gives a lot of clues
● Content is still useful

● Speech to text algorithms made a lot of progress
● See EESEN

● Raw text is hard to use directly
● Hence the need for sentiment analysis
● And vector representation

How do we proceed / Text features



● Stack all the features…

● Add available meta-parameters…

● And you are left with tabular data with scalar labels
● Currently more than 700 features
● More available, should we use them?

How do we proceed / Learning



● Numerous algorithms & tools are available:
● Logistic regression, random forests, SVM, neural nets

● Features selection algorithm (e.g. SFFS) partly solve the 
difficulties related to features number

● As always, you might have to tune some hyperparameters

How do we proceed / Learning



● Regarding predictions and number of features, the more 
data the better

● Computational power is limited
● Feature extraction take some time
● Learning algorithm also, especially when learning is made iteratively 

(hyperparameters, feature selection)

● Orders of magnitude of a standard problem:
● 10x real time (prediction)
● 10k hours audio (learning)
● 100k files (learning)

How do we proceed / Learning



● Need for scalable computing power

● In our case: Amazon cloud

● Automated docker deployment/use

● Spark parallelization
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How do we proceed / Infrastructure



● A specific use case: Entreparticuliers.com

● Binary output

● ~200k files, median ~4 minutes with heavy tail

● Could we shorten calls by rapidly predicting output?

How do we proceed / Example



● Get insight on variables
● And what happens within calls

How do we proceed / Example



● Specific results (random forests, no semantic):

Audio processed (s) 60 120 180 240 300

Accuracy (%) 75 75 72 69 65

How do we proceed / Example



What next?



● Adding the semantic dimensions

● Partnership with a specialized speech-to-text (STT) 
company

● Over the summer: in-house end-to-end STT using the 
EESEN framework
● Phonetic model: deep Bi-Directional Recurring Neural Networks + 

CTC loss
● Linguistic model: Weighted Finite State Transducers (WFSTs)

● Pros of in-house solution: can adapt the language model 
(and even the phonetic model given annotated speech) to 
each new case

What next / Semantic



● Classical ML models cannot handle sequential data

● Basic idea: split the conversation into consecutive speaking 
turns

● Two possibilities: convolutional and recurrent networks

● Data extraction:
● Paralinguistic: turn-level feature summaries
● Semantic: word embeddings (word2vec, doc2vec)

What next / Sequential models



● Automatic, personalized offers

● Predict other types of outcome, such as churn (high-stake 
issue for subscription-based services; telecom, magazines, 
etc.)

What next / Other use cases



● Speaker Diarization: A Review of Recent Research
● Xavier Anguera, Simon Bozonnet, Nicholas Evans

● EESEN: End-to-End Speech Recognition using Deep RNN 
Models and WFST-based Decoding
● Yajie Miao, Mohammad Gowayyed & Florian Metze

● The Geneva Minimalistic Acoustic Parameter Set 
(GeMAPS) for Voice Research and Affective Computing
● Florian Eyben & al. 

● https://aws.amazon.com/blogs/compute/better-together-
amazon-ecs-and-aws-lambda/

Conclusion / Main references



● Many thanks to:
● Entreparticuliers.com
● Smart School

Conclusion



● Don’t be shy!

● Contact: contact@batvoice.com

Conclusion
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